Cargando…

Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation

The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In v...

Descripción completa

Detalles Bibliográficos
Autores principales: Replogle, Maria R., Sreevidya, Virinchipuram S., Lee, Vivian M., Laiosa, Michael D., Svoboda, Kurt R., Udvadia, Ava J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307900/
https://www.ncbi.nlm.nih.gov/pubmed/30409814
http://dx.doi.org/10.1242/dmm.035097
_version_ 1783383090580684800
author Replogle, Maria R.
Sreevidya, Virinchipuram S.
Lee, Vivian M.
Laiosa, Michael D.
Svoboda, Kurt R.
Udvadia, Ava J.
author_facet Replogle, Maria R.
Sreevidya, Virinchipuram S.
Lee, Vivian M.
Laiosa, Michael D.
Svoboda, Kurt R.
Udvadia, Ava J.
author_sort Replogle, Maria R.
collection PubMed
description The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential. This article has an associated First Person interview with the first author of the paper.
format Online
Article
Text
id pubmed-6307900
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher The Company of Biologists Ltd
record_format MEDLINE/PubMed
spelling pubmed-63079002018-12-28 Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation Replogle, Maria R. Sreevidya, Virinchipuram S. Lee, Vivian M. Laiosa, Michael D. Svoboda, Kurt R. Udvadia, Ava J. Dis Model Mech Resource Article The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential. This article has an associated First Person interview with the first author of the paper. The Company of Biologists Ltd 2018-12-01 2018-12-12 /pmc/articles/PMC6307900/ /pubmed/30409814 http://dx.doi.org/10.1242/dmm.035097 Text en © 2018. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Resource Article
Replogle, Maria R.
Sreevidya, Virinchipuram S.
Lee, Vivian M.
Laiosa, Michael D.
Svoboda, Kurt R.
Udvadia, Ava J.
Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
title Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
title_full Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
title_fullStr Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
title_full_unstemmed Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
title_short Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
title_sort establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
topic Resource Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307900/
https://www.ncbi.nlm.nih.gov/pubmed/30409814
http://dx.doi.org/10.1242/dmm.035097
work_keys_str_mv AT reploglemariar establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation
AT sreevidyavirinchipurams establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation
AT leevivianm establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation
AT laiosamichaeld establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation
AT svobodakurtr establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation
AT udvadiaavaj establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation