Cargando…
Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation
The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In v...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307900/ https://www.ncbi.nlm.nih.gov/pubmed/30409814 http://dx.doi.org/10.1242/dmm.035097 |
_version_ | 1783383090580684800 |
---|---|
author | Replogle, Maria R. Sreevidya, Virinchipuram S. Lee, Vivian M. Laiosa, Michael D. Svoboda, Kurt R. Udvadia, Ava J. |
author_facet | Replogle, Maria R. Sreevidya, Virinchipuram S. Lee, Vivian M. Laiosa, Michael D. Svoboda, Kurt R. Udvadia, Ava J. |
author_sort | Replogle, Maria R. |
collection | PubMed |
description | The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential. This article has an associated First Person interview with the first author of the paper. |
format | Online Article Text |
id | pubmed-6307900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-63079002018-12-28 Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation Replogle, Maria R. Sreevidya, Virinchipuram S. Lee, Vivian M. Laiosa, Michael D. Svoboda, Kurt R. Udvadia, Ava J. Dis Model Mech Resource Article The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential. This article has an associated First Person interview with the first author of the paper. The Company of Biologists Ltd 2018-12-01 2018-12-12 /pmc/articles/PMC6307900/ /pubmed/30409814 http://dx.doi.org/10.1242/dmm.035097 Text en © 2018. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Resource Article Replogle, Maria R. Sreevidya, Virinchipuram S. Lee, Vivian M. Laiosa, Michael D. Svoboda, Kurt R. Udvadia, Ava J. Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
title | Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
title_full | Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
title_fullStr | Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
title_full_unstemmed | Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
title_short | Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
title_sort | establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation |
topic | Resource Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307900/ https://www.ncbi.nlm.nih.gov/pubmed/30409814 http://dx.doi.org/10.1242/dmm.035097 |
work_keys_str_mv | AT reploglemariar establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation AT sreevidyavirinchipurams establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation AT leevivianm establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation AT laiosamichaeld establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation AT svobodakurtr establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation AT udvadiaavaj establishmentofamurineculturesystemformodelingthetemporalprogressionofcranialandtrunkneuralcrestcelldifferentiation |