Cargando…

The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae

The mineralocorticoid receptor (MR) in mammals mediates the effects of aldosterone in regulating fluid balance and potassium homeostasis. While MR signalling is essential for survival in mammals, there is no evidence that MR has any physiological role in ray-finned fish. Teleosts lack aldosterone an...

Descripción completa

Detalles Bibliográficos
Autores principales: Faught, Erin, Vijayan, Mathilakath M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308233/
https://www.ncbi.nlm.nih.gov/pubmed/30591705
http://dx.doi.org/10.1038/s41598-018-36681-w
Descripción
Sumario:The mineralocorticoid receptor (MR) in mammals mediates the effects of aldosterone in regulating fluid balance and potassium homeostasis. While MR signalling is essential for survival in mammals, there is no evidence that MR has any physiological role in ray-finned fish. Teleosts lack aldosterone and emerging evidence suggest that cortisol mediates ion and fluid regulation by activating glucocorticoid receptor (GR) signalling. Consequently, a physiological role for MR signalling, despite its conserved and ancient origin, is still lacking. We tested the hypothesis that a key physiological role for MR signalling in fish is the regulation of stress axis activation and function. Using either MR or GR knockout zebrafish, our results reveal distinct and complementary role for these receptors in stress axis function. GR(−/−) mutants were hypercortisolemic and failed to elicit a cortisol stress response, while MR(−/−) mutants showed a delayed, but sustained cortisol response post-stressor. Both these receptors are involved in stress-related behaviour, as the loss of either receptors abolished the glucocorticoid-mediated larval hyperactivity to a light stimulus. Overall, the results underscore a key physiological role for MR signalling in ray-finned fishes, and we propose that the regulation of the highly conserved stress axis as the original function of this receptor.