Cargando…
Usage Data and Scientific Impact of the Prospectively Established Fluid Bioresources at the Hospital-Based MedUni Wien Biobank
Background and Aim: It is increasingly recognized that biomedical research has serious reproducibility issues, which could be overcome at least in part by standardized processing of biomaterials. Therefore, professional biobanks have emerged, positively influencing sample and data quality. However,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308288/ https://www.ncbi.nlm.nih.gov/pubmed/30335475 http://dx.doi.org/10.1089/bio.2018.0032 |
Sumario: | Background and Aim: It is increasingly recognized that biomedical research has serious reproducibility issues, which could be overcome at least in part by standardized processing of biomaterials. Therefore, professional biobanks have emerged, positively influencing sample and data quality. However, quantitative data about a biobank's contribution to published results are still hard to find, although they could serve as valuable benchmark figures for the community. We therefore aimed to report usage data from the MedUni Wien Biobank facility regarding its prospective fluid cohorts. Methods: Input and access statistics and publication output were reported for the years 2010–2017. Performance dynamics were tested by correlation analyses according to Spearman. Additionally, virtual costs per sample were calculated. Results: The amount of annually collected aliquots rose significantly from 68,500 in 2010 to 151,966 in 2017 (p = 0.015), although no further increase was recorded after 2012 (p = 0.266). In the same period, the quotient of requested to stored aliquots increased from 3.5% to 6.1% (p = 0.001), as the yearly number of requested aliquots nearly quadrupled from 2401 to 9342. Likewise, the number of published research articles per year to which the MedUni Wien Biobank contributed increased from 2 (total impact factor: 8.6) in 2010 to 16 (total impact factor: 69.0) in 2017, resulting in a total of 69 identified publications. Currently, the biobank operates at 15- to 20-fold overproduction, leading to virtual costs per accessed sample of ∼€20. Conclusion: The reported usage data might serve as a benchmark for other hospital-integrated biobanks, and implies that academic biobanks are able to produce considerable scientific impact at comparable moderate costs. |
---|