Cargando…
Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation
Recent advances reveal that metabolic reprogramming is required for adequate antiviral responses of dendritic cells (DCs) that possess the capacity to initiate innate and adaptive immune responses. Several reports indicate that Toll-like receptor (TLR) stimulation of DCs is accompanied by a rapid in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308321/ https://www.ncbi.nlm.nih.gov/pubmed/30622542 http://dx.doi.org/10.3389/fimmu.2018.03070 |
_version_ | 1783383170530410496 |
---|---|
author | Fekete, Tünde Sütö, Mate I. Bencze, Dora Mázló, Anett Szabo, Attila Biro, Tamas Bacsi, Attila Pazmandi, Kitti |
author_facet | Fekete, Tünde Sütö, Mate I. Bencze, Dora Mázló, Anett Szabo, Attila Biro, Tamas Bacsi, Attila Pazmandi, Kitti |
author_sort | Fekete, Tünde |
collection | PubMed |
description | Recent advances reveal that metabolic reprogramming is required for adequate antiviral responses of dendritic cells (DCs) that possess the capacity to initiate innate and adaptive immune responses. Several reports indicate that Toll-like receptor (TLR) stimulation of DCs is accompanied by a rapid induction of glycolysis; however, the metabolic requirements of retinoic-acid inducible gene I (RIG-I)-like receptor (RLR) activation have not defined either in conventional DCs (cDCs) or in plasmacytoid DCs (pDCs) that are the major producers of type I interferons (IFN) upon viral infections. To sense viruses and trigger an early type I IFN response, pDCs rely on endosomal TLRs, whereas cDCs employ cytosolic RIG-I, which is constitutively present in their cytoplasm. We previously found that RIG-I is upregulated in pDCs upon endosomal TLR activation and contributes to the late phase of type I IFN responses. Here we report that TLR9-driven activation of human pDCs leads to a metabolic transition to glycolysis supporting the production of type I IFNs, whereas RIG-I-mediated antiviral responses of pDCs do not require glycolysis and rather rely on oxidative phosphorylation (OXPHOS) activity. In particular, TLR9-activated pDCs show increased extracellular acidification rate (ECAR), lactate production, and upregulation of key glycolytic genes indicating an elevation in glycolytic flux. Furthermore, administration of 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, significantly impairs the TLR9-induced secretion of type I IFNs by human pDCs. In contrast, RIG-I stimulation of pDCs does not result in any alterations of ECAR, and type I IFN production is not inhibited but rather promoted by 2-DG treatment. Moreover, pDCs activated via TLR9 but not RIG-I in the presence of 2-DG are impaired in their capacity to prime allogeneic naïve CD8(+) T cell proliferation. Interestingly, human monocyte-derived DCs (moDC) triggered via RIG-I show a commitment to glycolysis to promote type I IFN production and T cell priming in contrast to pDCs. Our findings reveal for the first time, that pDCs display a unique metabolic profile; TLR9-driven but not RIG-I-mediated activation of pDCs requires glycolytic reprogramming. Nevertheless, the metabolic signature of RIG-I-stimulated moDCs is characterized by glycolysis suggesting that RIG-I-induced metabolic alterations are rather cell type-specific and not receptor-specific. |
format | Online Article Text |
id | pubmed-6308321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63083212019-01-08 Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation Fekete, Tünde Sütö, Mate I. Bencze, Dora Mázló, Anett Szabo, Attila Biro, Tamas Bacsi, Attila Pazmandi, Kitti Front Immunol Immunology Recent advances reveal that metabolic reprogramming is required for adequate antiviral responses of dendritic cells (DCs) that possess the capacity to initiate innate and adaptive immune responses. Several reports indicate that Toll-like receptor (TLR) stimulation of DCs is accompanied by a rapid induction of glycolysis; however, the metabolic requirements of retinoic-acid inducible gene I (RIG-I)-like receptor (RLR) activation have not defined either in conventional DCs (cDCs) or in plasmacytoid DCs (pDCs) that are the major producers of type I interferons (IFN) upon viral infections. To sense viruses and trigger an early type I IFN response, pDCs rely on endosomal TLRs, whereas cDCs employ cytosolic RIG-I, which is constitutively present in their cytoplasm. We previously found that RIG-I is upregulated in pDCs upon endosomal TLR activation and contributes to the late phase of type I IFN responses. Here we report that TLR9-driven activation of human pDCs leads to a metabolic transition to glycolysis supporting the production of type I IFNs, whereas RIG-I-mediated antiviral responses of pDCs do not require glycolysis and rather rely on oxidative phosphorylation (OXPHOS) activity. In particular, TLR9-activated pDCs show increased extracellular acidification rate (ECAR), lactate production, and upregulation of key glycolytic genes indicating an elevation in glycolytic flux. Furthermore, administration of 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, significantly impairs the TLR9-induced secretion of type I IFNs by human pDCs. In contrast, RIG-I stimulation of pDCs does not result in any alterations of ECAR, and type I IFN production is not inhibited but rather promoted by 2-DG treatment. Moreover, pDCs activated via TLR9 but not RIG-I in the presence of 2-DG are impaired in their capacity to prime allogeneic naïve CD8(+) T cell proliferation. Interestingly, human monocyte-derived DCs (moDC) triggered via RIG-I show a commitment to glycolysis to promote type I IFN production and T cell priming in contrast to pDCs. Our findings reveal for the first time, that pDCs display a unique metabolic profile; TLR9-driven but not RIG-I-mediated activation of pDCs requires glycolytic reprogramming. Nevertheless, the metabolic signature of RIG-I-stimulated moDCs is characterized by glycolysis suggesting that RIG-I-induced metabolic alterations are rather cell type-specific and not receptor-specific. Frontiers Media S.A. 2018-12-21 /pmc/articles/PMC6308321/ /pubmed/30622542 http://dx.doi.org/10.3389/fimmu.2018.03070 Text en Copyright © 2018 Fekete, Sütö, Bencze, Mázló, Szabo, Biro, Bacsi and Pazmandi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Fekete, Tünde Sütö, Mate I. Bencze, Dora Mázló, Anett Szabo, Attila Biro, Tamas Bacsi, Attila Pazmandi, Kitti Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation |
title | Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation |
title_full | Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation |
title_fullStr | Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation |
title_full_unstemmed | Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation |
title_short | Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation |
title_sort | human plasmacytoid and monocyte-derived dendritic cells display distinct metabolic profile upon rig-i activation |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308321/ https://www.ncbi.nlm.nih.gov/pubmed/30622542 http://dx.doi.org/10.3389/fimmu.2018.03070 |
work_keys_str_mv | AT feketetunde humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT sutomatei humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT benczedora humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT mazloanett humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT szaboattila humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT birotamas humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT bacsiattila humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation AT pazmandikitti humanplasmacytoidandmonocytederiveddendriticcellsdisplaydistinctmetabolicprofileuponrigiactivation |