Cargando…

SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples

The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200–3500 cm(−...

Descripción completa

Detalles Bibliográficos
Autores principales: Fabelo, Himar, Ortega, Samuel, Casselden, Elizabeth, Loh, Jane, Bulstrode, Harry, Zolnourian, Ardalan, Grundy, Paul, M. Callico, Gustavo, Bulters, Diederik, Sarmiento, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308411/
https://www.ncbi.nlm.nih.gov/pubmed/30567396
http://dx.doi.org/10.3390/s18124487
_version_ 1783383181307674624
author Fabelo, Himar
Ortega, Samuel
Casselden, Elizabeth
Loh, Jane
Bulstrode, Harry
Zolnourian, Ardalan
Grundy, Paul
M. Callico, Gustavo
Bulters, Diederik
Sarmiento, Roberto
author_facet Fabelo, Himar
Ortega, Samuel
Casselden, Elizabeth
Loh, Jane
Bulstrode, Harry
Zolnourian, Ardalan
Grundy, Paul
M. Callico, Gustavo
Bulters, Diederik
Sarmiento, Roberto
author_sort Fabelo, Himar
collection PubMed
description The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200–3500 cm(−1). An extensive analysis was performed to find the optimal configuration for a support vector machine classifier and determine the most relevant regions of the spectra for this particular application. The results demonstrate that the developed algorithm is robust enough to classify the infrared spectroscopic data of human brain tissue at three different discrimination levels.
format Online
Article
Text
id pubmed-6308411
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63084112019-01-04 SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples Fabelo, Himar Ortega, Samuel Casselden, Elizabeth Loh, Jane Bulstrode, Harry Zolnourian, Ardalan Grundy, Paul M. Callico, Gustavo Bulters, Diederik Sarmiento, Roberto Sensors (Basel) Article The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200–3500 cm(−1). An extensive analysis was performed to find the optimal configuration for a support vector machine classifier and determine the most relevant regions of the spectra for this particular application. The results demonstrate that the developed algorithm is robust enough to classify the infrared spectroscopic data of human brain tissue at three different discrimination levels. MDPI 2018-12-18 /pmc/articles/PMC6308411/ /pubmed/30567396 http://dx.doi.org/10.3390/s18124487 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Fabelo, Himar
Ortega, Samuel
Casselden, Elizabeth
Loh, Jane
Bulstrode, Harry
Zolnourian, Ardalan
Grundy, Paul
M. Callico, Gustavo
Bulters, Diederik
Sarmiento, Roberto
SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples
title SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples
title_full SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples
title_fullStr SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples
title_full_unstemmed SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples
title_short SVM Optimization for Brain Tumor Identification Using Infrared Spectroscopic Samples
title_sort svm optimization for brain tumor identification using infrared spectroscopic samples
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308411/
https://www.ncbi.nlm.nih.gov/pubmed/30567396
http://dx.doi.org/10.3390/s18124487
work_keys_str_mv AT fabelohimar svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT ortegasamuel svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT casseldenelizabeth svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT lohjane svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT bulstrodeharry svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT zolnourianardalan svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT grundypaul svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT mcallicogustavo svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT bultersdiederik svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples
AT sarmientoroberto svmoptimizationforbraintumoridentificationusinginfraredspectroscopicsamples