Cargando…
Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones
This paper presents an ambient magnetic field map-based matching (MM) positioning algorithm for smartphones in an indoor environment. To improve the low distinguishability of a magnetic field fingerprint at a single point, a magnetic field sequence (MFS) combined with the measured trajectory contour...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308508/ https://www.ncbi.nlm.nih.gov/pubmed/30486300 http://dx.doi.org/10.3390/s18124142 |
_version_ | 1783383205272879104 |
---|---|
author | Kuang, Jian Niu, Xiaoji Zhang, Peng Chen, Xingeng |
author_facet | Kuang, Jian Niu, Xiaoji Zhang, Peng Chen, Xingeng |
author_sort | Kuang, Jian |
collection | PubMed |
description | This paper presents an ambient magnetic field map-based matching (MM) positioning algorithm for smartphones in an indoor environment. To improve the low distinguishability of a magnetic field fingerprint at a single point, a magnetic field sequence (MFS) combined with the measured trajectory contour coming from pedestrian dead-reckoning (PDR) is used for MM. Based on the fast approximation of magnetic field gradient, a Gauss-Newton iterative (GNI) method is used to find a rigid transformation that optimally aligns the measured MFS with a reference MFS coming from the magnetic field map. Then, the position of the reference MFS is used to control the position drift error of the inertial navigation system (INS) based PDR by an extended Kalman filter (EKF) and to further improve the accuracy of the trajectory contour. Finally, we conduct several experiments to evaluate the navigation performance of the proposed MM algorithm. The test results show that the position estimation error of the MM algorithm is 0.64 m (RMS) in an office building environment, 1.87 m (RMS) in a typical lobby environment, and 2.34 m (RMS) in a shopping mall environment. |
format | Online Article Text |
id | pubmed-6308508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63085082019-01-04 Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones Kuang, Jian Niu, Xiaoji Zhang, Peng Chen, Xingeng Sensors (Basel) Article This paper presents an ambient magnetic field map-based matching (MM) positioning algorithm for smartphones in an indoor environment. To improve the low distinguishability of a magnetic field fingerprint at a single point, a magnetic field sequence (MFS) combined with the measured trajectory contour coming from pedestrian dead-reckoning (PDR) is used for MM. Based on the fast approximation of magnetic field gradient, a Gauss-Newton iterative (GNI) method is used to find a rigid transformation that optimally aligns the measured MFS with a reference MFS coming from the magnetic field map. Then, the position of the reference MFS is used to control the position drift error of the inertial navigation system (INS) based PDR by an extended Kalman filter (EKF) and to further improve the accuracy of the trajectory contour. Finally, we conduct several experiments to evaluate the navigation performance of the proposed MM algorithm. The test results show that the position estimation error of the MM algorithm is 0.64 m (RMS) in an office building environment, 1.87 m (RMS) in a typical lobby environment, and 2.34 m (RMS) in a shopping mall environment. MDPI 2018-11-26 /pmc/articles/PMC6308508/ /pubmed/30486300 http://dx.doi.org/10.3390/s18124142 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kuang, Jian Niu, Xiaoji Zhang, Peng Chen, Xingeng Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones |
title | Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones |
title_full | Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones |
title_fullStr | Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones |
title_full_unstemmed | Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones |
title_short | Indoor Positioning Based on Pedestrian Dead Reckoning and Magnetic Field Matching for Smartphones |
title_sort | indoor positioning based on pedestrian dead reckoning and magnetic field matching for smartphones |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308508/ https://www.ncbi.nlm.nih.gov/pubmed/30486300 http://dx.doi.org/10.3390/s18124142 |
work_keys_str_mv | AT kuangjian indoorpositioningbasedonpedestriandeadreckoningandmagneticfieldmatchingforsmartphones AT niuxiaoji indoorpositioningbasedonpedestriandeadreckoningandmagneticfieldmatchingforsmartphones AT zhangpeng indoorpositioningbasedonpedestriandeadreckoningandmagneticfieldmatchingforsmartphones AT chenxingeng indoorpositioningbasedonpedestriandeadreckoningandmagneticfieldmatchingforsmartphones |