Cargando…

Crowd-Sourced Mapping of New Feature Layer for High-Definition Map

A High-Definition map (HD map) is a precise and detailed map composed of various landmark feature layers. The HD map is a core technology that facilitates the essential functions of intelligent vehicles. Recently, it has come to be required for the HD map to continuously add new feature layers in or...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Chansoo, Cho, Sungjin, Sunwoo, Myoungho, Jo, Kichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308540/
https://www.ncbi.nlm.nih.gov/pubmed/30487399
http://dx.doi.org/10.3390/s18124172
Descripción
Sumario:A High-Definition map (HD map) is a precise and detailed map composed of various landmark feature layers. The HD map is a core technology that facilitates the essential functions of intelligent vehicles. Recently, it has come to be required for the HD map to continuously add new feature layers in order to increase the performances of intelligent vehicles in more complicated environments. However, it is difficult to generate a new feature layer for the HD map, because the conventional method of generating the HD map based on several professional mapping cars has high costs in terms of time and money due to the need to re-drive on all of the public roads. In order to reduce these costs, we propose a crowd-sourced mapping process of the new feature layer for the HD map. This process is composed of two steps. First, new features in the environments are acquired from multiple intelligent vehicles. The acquired new features build each new feature layer in each intelligent vehicle using the HD map-based GraphSLAM approach, and these new feature layers are conveyed to a map cloud through a mobile network system. Next, the crowd-sourced new feature layers are integrated into a new feature layer in a map cloud. In the simulation, the performance of the crowd-sourced process is then analyzed and evaluated. Experiments in real driving environments confirm the results of the simulation.