Cargando…
Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings
Inductive transducers are widely applied to active magnetic bearings (AMBs). However, when the rotor rotates at a high speed, the rotor defects will affect the measuring signal (the magnetic field generated by transducer coils) and then reduce the transducer measuring accuracy. The rotor in AMBs is...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308579/ https://www.ncbi.nlm.nih.gov/pubmed/30544911 http://dx.doi.org/10.3390/s18124376 |
_version_ | 1783383222284976128 |
---|---|
author | Yu, Jinpeng Zhou, Yan Mo, Ni Sun, Zhe Zhao, Lei |
author_facet | Yu, Jinpeng Zhou, Yan Mo, Ni Sun, Zhe Zhao, Lei |
author_sort | Yu, Jinpeng |
collection | PubMed |
description | Inductive transducers are widely applied to active magnetic bearings (AMBs). However, when the rotor rotates at a high speed, the rotor defects will affect the measuring signal (the magnetic field generated by transducer coils) and then reduce the transducer measuring accuracy. The rotor in AMBs is assembled with laminations, which will result in rotor non-mechanical errors. In this paper, rotor non-mechanical errors, including the anisotropic internal permeability and anisotropic surface conductivity, and their influence on double-pole variable-gap inductive transducers are explored in depth. The anisotropic internal permeability will affect the transducer measuring accuracy and bring about [Formula: see text] measurement error. The anisotropic surface conductivity leads to different eddy currents around the rotor, influences the equivalent reluctance of the magnetic circuit, and then affectsthe transducer measuring accuracy. The experiments prove that rotor non-mechanical errors have a significant influence on transducer measurement accuracy, and the reduction of the transducer excitation frequency can reduce the measurement error and improve the AMB control performance. |
format | Online Article Text |
id | pubmed-6308579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63085792019-01-04 Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings Yu, Jinpeng Zhou, Yan Mo, Ni Sun, Zhe Zhao, Lei Sensors (Basel) Article Inductive transducers are widely applied to active magnetic bearings (AMBs). However, when the rotor rotates at a high speed, the rotor defects will affect the measuring signal (the magnetic field generated by transducer coils) and then reduce the transducer measuring accuracy. The rotor in AMBs is assembled with laminations, which will result in rotor non-mechanical errors. In this paper, rotor non-mechanical errors, including the anisotropic internal permeability and anisotropic surface conductivity, and their influence on double-pole variable-gap inductive transducers are explored in depth. The anisotropic internal permeability will affect the transducer measuring accuracy and bring about [Formula: see text] measurement error. The anisotropic surface conductivity leads to different eddy currents around the rotor, influences the equivalent reluctance of the magnetic circuit, and then affectsthe transducer measuring accuracy. The experiments prove that rotor non-mechanical errors have a significant influence on transducer measurement accuracy, and the reduction of the transducer excitation frequency can reduce the measurement error and improve the AMB control performance. MDPI 2018-12-11 /pmc/articles/PMC6308579/ /pubmed/30544911 http://dx.doi.org/10.3390/s18124376 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Jinpeng Zhou, Yan Mo, Ni Sun, Zhe Zhao, Lei Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings |
title | Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings |
title_full | Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings |
title_fullStr | Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings |
title_full_unstemmed | Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings |
title_short | Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings |
title_sort | theoretical and experimental analysis on the influence of rotor non-mechanical errors of the inductive transducer in active magnetic bearings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308579/ https://www.ncbi.nlm.nih.gov/pubmed/30544911 http://dx.doi.org/10.3390/s18124376 |
work_keys_str_mv | AT yujinpeng theoreticalandexperimentalanalysisontheinfluenceofrotornonmechanicalerrorsoftheinductivetransducerinactivemagneticbearings AT zhouyan theoreticalandexperimentalanalysisontheinfluenceofrotornonmechanicalerrorsoftheinductivetransducerinactivemagneticbearings AT moni theoreticalandexperimentalanalysisontheinfluenceofrotornonmechanicalerrorsoftheinductivetransducerinactivemagneticbearings AT sunzhe theoreticalandexperimentalanalysisontheinfluenceofrotornonmechanicalerrorsoftheinductivetransducerinactivemagneticbearings AT zhaolei theoreticalandexperimentalanalysisontheinfluenceofrotornonmechanicalerrorsoftheinductivetransducerinactivemagneticbearings |