Cargando…

Bilevel Optimization-Based Time-Optimal Path Planning for AUVs

Using the bilevel optimization (BIO) scheme, this paper presents a time-optimal path planner for autonomous underwater vehicles (AUVs) operating in grid-based environments with ocean currents. In this scheme, the upper optimization problem is defined as finding a free-collision channel from a starti...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Xuliang, Wang, Feng, Wang, Jingfang, Wang, Xiaowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308619/
https://www.ncbi.nlm.nih.gov/pubmed/30486468
http://dx.doi.org/10.3390/s18124167
Descripción
Sumario:Using the bilevel optimization (BIO) scheme, this paper presents a time-optimal path planner for autonomous underwater vehicles (AUVs) operating in grid-based environments with ocean currents. In this scheme, the upper optimization problem is defined as finding a free-collision channel from a starting point to a destination, which consists of connected grids, and the lower optimization problem is defined as finding an energy-optimal path in the channel generated by the upper level algorithm. The proposed scheme is integrated with ant colony algorithm as the upper level and quantum-behaved particle swarm optimization as the lower level and tested to find an energy-optimal path for AUV navigating through an ocean environment in the presence of obstacles. This arrangement prevents discrete state transitions that constrain a vehicle’s motion to a small set of headings and improves efficiency by the usage of evolutionary algorithms. Simulation results show that the proposed BIO scheme has higher computation efficiency with a slightly lower fitness value than sliding wavefront expansion scheme, which is a grid-based path planner with continuous motion directions.