Cargando…
Abandoned Object Detection in Video-Surveillance: Survey and Comparison
During the last few years, abandoned object detection has emerged as a hot topic in the video-surveillance community. As a consequence, a myriad of systems has been proposed for automatic monitoring of public and private places, while addressing several challenges affecting detection performance. Du...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308643/ https://www.ncbi.nlm.nih.gov/pubmed/30563189 http://dx.doi.org/10.3390/s18124290 |
_version_ | 1783383237296390144 |
---|---|
author | Luna, Elena San Miguel, Juan Carlos Ortego, Diego Martínez, José María |
author_facet | Luna, Elena San Miguel, Juan Carlos Ortego, Diego Martínez, José María |
author_sort | Luna, Elena |
collection | PubMed |
description | During the last few years, abandoned object detection has emerged as a hot topic in the video-surveillance community. As a consequence, a myriad of systems has been proposed for automatic monitoring of public and private places, while addressing several challenges affecting detection performance. Due to the complexity of these systems, researchers often address independently the different analysis stages such as foreground segmentation, stationary object detection, and abandonment validation. Despite the improvements achieved for each stage, the advances are rarely applied to the full pipeline, and therefore, the impact of each stage of improvement on the overall system performance has not been studied. In this paper, we formalize the framework employed by systems for abandoned object detection and provide an extensive review of state-of-the-art approaches for each stage. We also build a multi-configuration system allowing one to select a range of alternatives for each stage with the objective of determining the combination achieving the best performance. This multi-configuration is made available online to the research community. We perform an extensive evaluation by gathering a heterogeneous dataset from existing data. Such a dataset allows considering multiple and different scenarios, whereas presenting various challenges such as illumination changes, shadows, and a high density of moving objects, unlike existing literature focusing on a few sequences. The experimental results identify the most effective configurations and highlight design choices favoring robustness to errors. Moreover, we validated such an optimal configuration on additional datasets not previously considered. We conclude the paper by discussing open research challenges arising from the experimental comparison. |
format | Online Article Text |
id | pubmed-6308643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63086432019-01-04 Abandoned Object Detection in Video-Surveillance: Survey and Comparison Luna, Elena San Miguel, Juan Carlos Ortego, Diego Martínez, José María Sensors (Basel) Article During the last few years, abandoned object detection has emerged as a hot topic in the video-surveillance community. As a consequence, a myriad of systems has been proposed for automatic monitoring of public and private places, while addressing several challenges affecting detection performance. Due to the complexity of these systems, researchers often address independently the different analysis stages such as foreground segmentation, stationary object detection, and abandonment validation. Despite the improvements achieved for each stage, the advances are rarely applied to the full pipeline, and therefore, the impact of each stage of improvement on the overall system performance has not been studied. In this paper, we formalize the framework employed by systems for abandoned object detection and provide an extensive review of state-of-the-art approaches for each stage. We also build a multi-configuration system allowing one to select a range of alternatives for each stage with the objective of determining the combination achieving the best performance. This multi-configuration is made available online to the research community. We perform an extensive evaluation by gathering a heterogeneous dataset from existing data. Such a dataset allows considering multiple and different scenarios, whereas presenting various challenges such as illumination changes, shadows, and a high density of moving objects, unlike existing literature focusing on a few sequences. The experimental results identify the most effective configurations and highlight design choices favoring robustness to errors. Moreover, we validated such an optimal configuration on additional datasets not previously considered. We conclude the paper by discussing open research challenges arising from the experimental comparison. MDPI 2018-12-05 /pmc/articles/PMC6308643/ /pubmed/30563189 http://dx.doi.org/10.3390/s18124290 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luna, Elena San Miguel, Juan Carlos Ortego, Diego Martínez, José María Abandoned Object Detection in Video-Surveillance: Survey and Comparison |
title | Abandoned Object Detection in Video-Surveillance: Survey and Comparison |
title_full | Abandoned Object Detection in Video-Surveillance: Survey and Comparison |
title_fullStr | Abandoned Object Detection in Video-Surveillance: Survey and Comparison |
title_full_unstemmed | Abandoned Object Detection in Video-Surveillance: Survey and Comparison |
title_short | Abandoned Object Detection in Video-Surveillance: Survey and Comparison |
title_sort | abandoned object detection in video-surveillance: survey and comparison |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308643/ https://www.ncbi.nlm.nih.gov/pubmed/30563189 http://dx.doi.org/10.3390/s18124290 |
work_keys_str_mv | AT lunaelena abandonedobjectdetectioninvideosurveillancesurveyandcomparison AT sanmigueljuancarlos abandonedobjectdetectioninvideosurveillancesurveyandcomparison AT ortegodiego abandonedobjectdetectioninvideosurveillancesurveyandcomparison AT martinezjosemaria abandonedobjectdetectioninvideosurveillancesurveyandcomparison |