Cargando…
Crack Classification of a Pressure Vessel Using Feature Selection and Deep Learning Methods
Pressure vessels (PV) are designed to hold liquids, gases, or vapors at high pressures in various industries, but a ruptured pressure vessel can be incredibly dangerous if cracks are not detected in the early stage. This paper proposes a robust crack identification technique for pressure vessels usi...
Autores principales: | Islam, Manjurul, Sohaib, Muhammad, Kim, Jaeyoung, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308688/ https://www.ncbi.nlm.nih.gov/pubmed/30544949 http://dx.doi.org/10.3390/s18124379 |
Ejemplares similares
-
Rub-Impact Fault Diagnosis Using an Effective IMF Selection Technique in Ensemble Empirical Mode Decomposition and Hybrid Feature Models
por: Prosvirin, Alexander E., et al.
Publicado: (2018) -
Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network
por: Islam, M. M. Manjurul, et al.
Publicado: (2019) -
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
por: Sohaib, Muhammad, et al.
Publicado: (2017) -
Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification
por: Piltan, Farzin, et al.
Publicado: (2021)