Cargando…
Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments
Convolutional Long Short-Term Memory Neural Networks (CNN-LSTM) are a variant of recurrent neural networks (RNN) that can extract spatial features in addition to classifying or making predictions from sequential data. In this paper, we analyzed the use of CNN-LSTM for gas source localization (GSL) i...
Autores principales: | Bilgera, Christian, Yamamoto, Akifumi, Sawano, Maki, Matsukura, Haruka, Ishida, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308690/ https://www.ncbi.nlm.nih.gov/pubmed/30567386 http://dx.doi.org/10.3390/s18124484 |
Ejemplares similares
-
Optimizing 802.15.4 Outdoor IoT Sensor Networks for Aerial Data Collection
por: Nekrasov, Michael, et al.
Publicado: (2019) -
Gas Classification Using Deep Convolutional Neural Networks
por: Peng, Pai, et al.
Publicado: (2018) -
Human Behavior Recognition in Outdoor Sports Based on the Local Error Model and Convolutional Neural Network
por: Hua, Xia, et al.
Publicado: (2022) -
Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization
por: Zhang, Xitong, et al.
Publicado: (2022) -
Ziwi: indoor and outdoor planning network—framework to collection, modeling and network structure based on computational optimization and measurements
por: Rocha, Lidia, et al.
Publicado: (2022)