Cargando…
A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO(2) Welding
At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN–LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN–...
Autores principales: | Liu, Tianyuan, Bao, Jinsong, Wang, Junliang, Zhang, Yiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308811/ https://www.ncbi.nlm.nih.gov/pubmed/30544744 http://dx.doi.org/10.3390/s18124369 |
Ejemplares similares
-
Aeroengine Working Condition Recognition Based on MsCNN-BiLSTM
por: Zheng, Jinsong, et al.
Publicado: (2022) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023) -
Laser Welding Penetration Monitoring Based on Time-Frequency Characterization of Acoustic Emission and CNN-LSTM Hybrid Network
por: Luo, Zhongyi, et al.
Publicado: (2023) -
Contact Pattern Recognition of a Flexible Tactile Sensor Based on the CNN-LSTM Fusion Algorithm
por: Song, Yang, et al.
Publicado: (2022)