Cargando…
MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors
Human activity recognition (HAR) through sensors embedded in smartphones has allowed for the development of systems that are capable of detecting and monitoring human behavior. However, such systems have been affected by the high consumption of computational resources (e.g., memory and processing) n...
Autores principales: | Montero Quispe, Kevin G., Sousa Lima, Wesllen, Macêdo Batista, Daniel, Souto, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308833/ https://www.ncbi.nlm.nih.gov/pubmed/30544667 http://dx.doi.org/10.3390/s18124354 |
Ejemplares similares
-
Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors
por: Sousa Lima, Wesllen, et al.
Publicado: (2018) -
Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview
por: Sousa Lima, Wesllen, et al.
Publicado: (2019) -
A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory
por: Bragança, Hendrio, et al.
Publicado: (2020) -
ESO Workshop on Minor Bodies in the Outer Solar System : ESO MBOSS '98
por: Collective
Publicado: (1998) -
Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals
por: Montero Quispe, Kevin G., et al.
Publicado: (2022)