Cargando…

Velocity-Adaptive V2I Fair-Access Scheme Based on IEEE 802.11 DCF for Platooning Vehicles

Platooning strategy is an important component of autonomous driving technology. Autonomous vehicles in platoons are often equipped with a variety of on-board sensors to detect the surrounding environment. The abundant data collected by autonomous vehicles in platoons can be transmitted to the infras...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qiong, Xia, Siyang, Fan, Pingyi, Fan, Qiang, Li, Zhengquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308987/
https://www.ncbi.nlm.nih.gov/pubmed/30513631
http://dx.doi.org/10.3390/s18124198
Descripción
Sumario:Platooning strategy is an important component of autonomous driving technology. Autonomous vehicles in platoons are often equipped with a variety of on-board sensors to detect the surrounding environment. The abundant data collected by autonomous vehicles in platoons can be transmitted to the infrastructure through vehicle-to-infrastructure (V2I) communications using the IEEE 802.11 distributed coordination function (DCF) mechanism and then uploaded to the cloud platform through the Internet. The cloud platform extracts useful information and then sends it back to the autonomous vehicles respectively. In this way, autonomous vehicles in platoons can detect emergency conditions and make a decision in time. The characteristics of platoons would cause a fair-access problem in the V2I communications, i.e., vehicles in the platoons moving on different lanes with different velocities would have different resident time within the infrastructure’s coverage and thus successfully send different amounts of data to the infrastructure. In this case, the vehicles with different velocities will receive different amounts of useful information from the cloud. As a result, vehicles with a higher velocity are more likely to suffer from a traffic accident as compared to the vehicles with a lower velocity. Hence, this paper considers the fair-access problem and proposes a fair-access scheme to ensure that vehicles with different velocities successfully transmit the same amount of data by adaptively adjusting the minimum contention window of each vehicle according to its velocity. Moreover, the normalized throughput of the proposed scheme is derived. The validity of the fair-access scheme is demonstrated by simulation.