Cargando…
Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms
Heavy metal pollution in crops leads to phenological changes, which can be monitored by remote sensing technology. The present study aims to develop a method for accurately evaluating heavy metal stress in rice based on remote sensing phenology. First, the enhanced spatial and temporal adaptive refl...
Autores principales: | Liu, Tianjiao, Liu, Xiangnan, Liu, Meiling, Wu, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308996/ https://www.ncbi.nlm.nih.gov/pubmed/30558149 http://dx.doi.org/10.3390/s18124425 |
Ejemplares similares
-
Evaluating Heavy Metal Stress Levels in Rice Based on Remote Sensing Phenology
por: Liu, Tianjiao, et al.
Publicado: (2018) -
Extraction of Rice Phenological Differences under Heavy Metal Stress Using EVI Time-Series from HJ-1A/B Data
por: Liu, Shuyuan, et al.
Publicado: (2017) -
A Framework for Rice Heavy Metal Stress Monitoring Based on Phenological Phase Space and Temporal Profile Analysis
por: Zou, Xinyu, et al.
Publicado: (2019) -
Spatio-temporal Index Based on Time Series of Leaf Area Index for Identifying Heavy Metal Stress in Rice under Complex Stressors
por: Tang, Yibo, et al.
Publicado: (2020) -
A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice
por: Zhang, Zhijiang, et al.
Publicado: (2018)