Cargando…
Sparse Ultrasound Imaging via Manifold Low-Rank Approximation and Non-Convex Greedy Pursuit
Model-based image reconstruction has improved contrast and spatial resolution in imaging applications such as magnetic resonance imaging and emission computed tomography. However, these methods have not succeeded in pulse-echo applications like ultrasound imaging due to the typical assumption of a f...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308998/ https://www.ncbi.nlm.nih.gov/pubmed/30477106 http://dx.doi.org/10.3390/s18124097 |
Sumario: | Model-based image reconstruction has improved contrast and spatial resolution in imaging applications such as magnetic resonance imaging and emission computed tomography. However, these methods have not succeeded in pulse-echo applications like ultrasound imaging due to the typical assumption of a finite grid of possible scatterer locations in a medium–an assumption that does not reflect the continuous nature of real world objects and creates a problem known as off-grid deviation. To cope with this problem, we present a method of dictionary expansion and constrained reconstruction that approximates the continuous manifold of all possible scatterer locations within a region of interest. The expanded dictionary is created using a highly coherent sampling of the region of interest, followed by a rank reduction procedure. We develop a greedy algorithm, based on the Orthogonal Matching Pursuit, that uses a correlation-based non-convex constraint set that allows for the division of the region of interest into cells of any size. To evaluate the performance of the method, we present results of two-dimensional ultrasound imaging with simulated data in a nondestructive testing application. Our method succeeds in the reconstructions of sparse images from noisy measurements, providing higher accuracy than previous approaches based on regular discrete models. |
---|