Cargando…
Using natural language processing and machine learning to identify breast cancer local recurrence
BACKGROUND: Identifying local recurrences in breast cancer from patient data sets is important for clinical research and practice. Developing a model using natural language processing and machine learning to identify local recurrences in breast cancer patients can reduce the time-consuming work of a...
Autores principales: | Zeng, Zexian, Espino, Sasa, Roy, Ankita, Li, Xiaoyu, Khan, Seema A., Clare, Susan E., Jiang, Xia, Neapolitan, Richard, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309052/ https://www.ncbi.nlm.nih.gov/pubmed/30591037 http://dx.doi.org/10.1186/s12859-018-2466-x |
Ejemplares similares
-
Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients
por: Zeng, Zexian, et al.
Publicado: (2020) -
Discovering causal interactions using Bayesian network scoring and information gain
por: Zeng, Zexian, et al.
Publicado: (2016) -
Conjugated equine estrogen and medroxyprogesterone acetate are associated with decreased risk of breast cancer relative to bioidentical hormone therapy and controls
por: Zeng, Zexian, et al.
Publicado: (2018) -
Artificial intelligence: with an introduction to machine learning
por: Neapolitan, Richard E, et al.
Publicado: (2018) -
Deep learning for cancer type classification and driver gene identification
por: Zeng, Zexian, et al.
Publicado: (2021)