Cargando…

Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress

BACKGROUND: MicroRNAs (miRNAs) are a class of small noncoding RNAs that play important roles in the regulation of gene expression. However, the role of miRNAs in bovine mammary gland responses to heat stress is not well understood. RESULTS: In the present study, we performed a deep RNA sequencing an...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qiuling, Yang, Chunhong, Du, Juan, Zhang, Baogui, He, Ying, Hu, Qimeng, Li, Meiru, Zhang, Yiming, Wang, Changfa, Zhong, Jifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309072/
https://www.ncbi.nlm.nih.gov/pubmed/30593264
http://dx.doi.org/10.1186/s12864-018-5298-1
Descripción
Sumario:BACKGROUND: MicroRNAs (miRNAs) are a class of small noncoding RNAs that play important roles in the regulation of gene expression. However, the role of miRNAs in bovine mammary gland responses to heat stress is not well understood. RESULTS: In the present study, we performed a deep RNA sequencing analysis to identify miRNAs associated with the heat stress potential of the bovine mammary gland. We identified 27 miRNAs that were differentially expressed significantly between the mammary tissue of Holstein cattle heat stress and normal conditions. Twenty miRNAs had higher expression in the mammary tissue of heat-stressed Holstein cattle. The seven highest differentially expressed candidate miRNAs (bta-miR-21-5p, bta-miR-99a-5p, bta-miR-146b, bta-miR-145, bta-miR-2285 t, bta-miR-133a, and bta-miR-29c) identified by deep RNA sequencing were additionally evaluated by stem-loop qPCR. Enrichment analyses for targeted genes revealed that the major differences between miRNAs expression in the mammary gland of heat-stressed versus control were associated with the regulation of Wnt, TGF-β, MAPK, Notch, and JAK-STAT. CONCLUSIONS: These data indicated that the differentially expressed miRNAs identified in this study may act as dominant regulators during heat stress. We might reduce heat stress damage of Holstein cows by up-regulating or down-regulating these differentially expressed miRNAs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5298-1) contains supplementary material, which is available to authorized users.