Cargando…
Application of transfer learning for cancer drug sensitivity prediction
BACKGROUND: In precision medicine, scarcity of suitable biological data often hinders the design of an appropriate predictive model. In this regard, large scale pharmacogenomics studies, like CCLE and GDSC hold the promise to mitigate the issue. However, one cannot directly employ data from multiple...
Autores principales: | Dhruba, Saugato Rahman, Rahman, Raziur, Matlock, Kevin, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309077/ https://www.ncbi.nlm.nih.gov/pubmed/30591023 http://dx.doi.org/10.1186/s12859-018-2465-y |
Ejemplares similares
-
Functional random forest with applications in dose-response predictions
por: Rahman, Raziur, et al.
Publicado: (2019) -
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2017) -
Investigation of model stacking for drug sensitivity prediction
por: Matlock, Kevin, et al.
Publicado: (2018) -
Recursive model for dose-time responses in pharmacological studies
por: Dhruba, Saugato Rahman, et al.
Publicado: (2019) -
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016)