Cargando…
Enter the Matrix: Factorization Uncovers Knowledge from Omics
Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncove...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309559/ https://www.ncbi.nlm.nih.gov/pubmed/30143323 http://dx.doi.org/10.1016/j.tig.2018.07.003 |
_version_ | 1783383372685377536 |
---|---|
author | Stein-O’Brien, Genevieve L. Arora, Raman Culhane, Aedin C. Favorov, Alexander V. Garmire, Lana X. Greene, Casey S. Goff, Loyal A. Li, Yifeng Ngom, Aloune Ochs, Michael F. Xu, Yanxun Fertig, Elana J. |
author_facet | Stein-O’Brien, Genevieve L. Arora, Raman Culhane, Aedin C. Favorov, Alexander V. Garmire, Lana X. Greene, Casey S. Goff, Loyal A. Li, Yifeng Ngom, Aloune Ochs, Michael F. Xu, Yanxun Fertig, Elana J. |
author_sort | Stein-O’Brien, Genevieve L. |
collection | PubMed |
description | Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncover new biological knowledge from diverse high-throughput omics data in applications ranging from pathway discovery to timecourse analysis. We review exemplary applications of MF for systems-level analyses. We discuss appropriate applications of these methods, their limitations, and focus on the analysis of results to facilitate optimal biological interpretation. The inference of biologically relevant features with MF enables discovery from high-throughput data beyond the limits of current biological knowledge - answering questions from high-dimensional data that we have not yet thought to ask. |
format | Online Article Text |
id | pubmed-6309559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63095592019-10-01 Enter the Matrix: Factorization Uncovers Knowledge from Omics Stein-O’Brien, Genevieve L. Arora, Raman Culhane, Aedin C. Favorov, Alexander V. Garmire, Lana X. Greene, Casey S. Goff, Loyal A. Li, Yifeng Ngom, Aloune Ochs, Michael F. Xu, Yanxun Fertig, Elana J. Trends Genet Article Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncover new biological knowledge from diverse high-throughput omics data in applications ranging from pathway discovery to timecourse analysis. We review exemplary applications of MF for systems-level analyses. We discuss appropriate applications of these methods, their limitations, and focus on the analysis of results to facilitate optimal biological interpretation. The inference of biologically relevant features with MF enables discovery from high-throughput data beyond the limits of current biological knowledge - answering questions from high-dimensional data that we have not yet thought to ask. 2018-08-22 2018-10 /pmc/articles/PMC6309559/ /pubmed/30143323 http://dx.doi.org/10.1016/j.tig.2018.07.003 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Stein-O’Brien, Genevieve L. Arora, Raman Culhane, Aedin C. Favorov, Alexander V. Garmire, Lana X. Greene, Casey S. Goff, Loyal A. Li, Yifeng Ngom, Aloune Ochs, Michael F. Xu, Yanxun Fertig, Elana J. Enter the Matrix: Factorization Uncovers Knowledge from Omics |
title | Enter the Matrix: Factorization Uncovers Knowledge from Omics |
title_full | Enter the Matrix: Factorization Uncovers Knowledge from Omics |
title_fullStr | Enter the Matrix: Factorization Uncovers Knowledge from Omics |
title_full_unstemmed | Enter the Matrix: Factorization Uncovers Knowledge from Omics |
title_short | Enter the Matrix: Factorization Uncovers Knowledge from Omics |
title_sort | enter the matrix: factorization uncovers knowledge from omics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309559/ https://www.ncbi.nlm.nih.gov/pubmed/30143323 http://dx.doi.org/10.1016/j.tig.2018.07.003 |
work_keys_str_mv | AT steinobriengenevievel enterthematrixfactorizationuncoversknowledgefromomics AT aroraraman enterthematrixfactorizationuncoversknowledgefromomics AT culhaneaedinc enterthematrixfactorizationuncoversknowledgefromomics AT favorovalexanderv enterthematrixfactorizationuncoversknowledgefromomics AT garmirelanax enterthematrixfactorizationuncoversknowledgefromomics AT greenecaseys enterthematrixfactorizationuncoversknowledgefromomics AT goffloyala enterthematrixfactorizationuncoversknowledgefromomics AT liyifeng enterthematrixfactorizationuncoversknowledgefromomics AT ngomaloune enterthematrixfactorizationuncoversknowledgefromomics AT ochsmichaelf enterthematrixfactorizationuncoversknowledgefromomics AT xuyanxun enterthematrixfactorizationuncoversknowledgefromomics AT fertigelanaj enterthematrixfactorizationuncoversknowledgefromomics |