Cargando…

Enter the Matrix: Factorization Uncovers Knowledge from Omics

Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncove...

Descripción completa

Detalles Bibliográficos
Autores principales: Stein-O’Brien, Genevieve L., Arora, Raman, Culhane, Aedin C., Favorov, Alexander V., Garmire, Lana X., Greene, Casey S., Goff, Loyal A., Li, Yifeng, Ngom, Aloune, Ochs, Michael F., Xu, Yanxun, Fertig, Elana J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309559/
https://www.ncbi.nlm.nih.gov/pubmed/30143323
http://dx.doi.org/10.1016/j.tig.2018.07.003
_version_ 1783383372685377536
author Stein-O’Brien, Genevieve L.
Arora, Raman
Culhane, Aedin C.
Favorov, Alexander V.
Garmire, Lana X.
Greene, Casey S.
Goff, Loyal A.
Li, Yifeng
Ngom, Aloune
Ochs, Michael F.
Xu, Yanxun
Fertig, Elana J.
author_facet Stein-O’Brien, Genevieve L.
Arora, Raman
Culhane, Aedin C.
Favorov, Alexander V.
Garmire, Lana X.
Greene, Casey S.
Goff, Loyal A.
Li, Yifeng
Ngom, Aloune
Ochs, Michael F.
Xu, Yanxun
Fertig, Elana J.
author_sort Stein-O’Brien, Genevieve L.
collection PubMed
description Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncover new biological knowledge from diverse high-throughput omics data in applications ranging from pathway discovery to timecourse analysis. We review exemplary applications of MF for systems-level analyses. We discuss appropriate applications of these methods, their limitations, and focus on the analysis of results to facilitate optimal biological interpretation. The inference of biologically relevant features with MF enables discovery from high-throughput data beyond the limits of current biological knowledge - answering questions from high-dimensional data that we have not yet thought to ask.
format Online
Article
Text
id pubmed-6309559
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-63095592019-10-01 Enter the Matrix: Factorization Uncovers Knowledge from Omics Stein-O’Brien, Genevieve L. Arora, Raman Culhane, Aedin C. Favorov, Alexander V. Garmire, Lana X. Greene, Casey S. Goff, Loyal A. Li, Yifeng Ngom, Aloune Ochs, Michael F. Xu, Yanxun Fertig, Elana J. Trends Genet Article Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncover new biological knowledge from diverse high-throughput omics data in applications ranging from pathway discovery to timecourse analysis. We review exemplary applications of MF for systems-level analyses. We discuss appropriate applications of these methods, their limitations, and focus on the analysis of results to facilitate optimal biological interpretation. The inference of biologically relevant features with MF enables discovery from high-throughput data beyond the limits of current biological knowledge - answering questions from high-dimensional data that we have not yet thought to ask. 2018-08-22 2018-10 /pmc/articles/PMC6309559/ /pubmed/30143323 http://dx.doi.org/10.1016/j.tig.2018.07.003 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Stein-O’Brien, Genevieve L.
Arora, Raman
Culhane, Aedin C.
Favorov, Alexander V.
Garmire, Lana X.
Greene, Casey S.
Goff, Loyal A.
Li, Yifeng
Ngom, Aloune
Ochs, Michael F.
Xu, Yanxun
Fertig, Elana J.
Enter the Matrix: Factorization Uncovers Knowledge from Omics
title Enter the Matrix: Factorization Uncovers Knowledge from Omics
title_full Enter the Matrix: Factorization Uncovers Knowledge from Omics
title_fullStr Enter the Matrix: Factorization Uncovers Knowledge from Omics
title_full_unstemmed Enter the Matrix: Factorization Uncovers Knowledge from Omics
title_short Enter the Matrix: Factorization Uncovers Knowledge from Omics
title_sort enter the matrix: factorization uncovers knowledge from omics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309559/
https://www.ncbi.nlm.nih.gov/pubmed/30143323
http://dx.doi.org/10.1016/j.tig.2018.07.003
work_keys_str_mv AT steinobriengenevievel enterthematrixfactorizationuncoversknowledgefromomics
AT aroraraman enterthematrixfactorizationuncoversknowledgefromomics
AT culhaneaedinc enterthematrixfactorizationuncoversknowledgefromomics
AT favorovalexanderv enterthematrixfactorizationuncoversknowledgefromomics
AT garmirelanax enterthematrixfactorizationuncoversknowledgefromomics
AT greenecaseys enterthematrixfactorizationuncoversknowledgefromomics
AT goffloyala enterthematrixfactorizationuncoversknowledgefromomics
AT liyifeng enterthematrixfactorizationuncoversknowledgefromomics
AT ngomaloune enterthematrixfactorizationuncoversknowledgefromomics
AT ochsmichaelf enterthematrixfactorizationuncoversknowledgefromomics
AT xuyanxun enterthematrixfactorizationuncoversknowledgefromomics
AT fertigelanaj enterthematrixfactorizationuncoversknowledgefromomics