Cargando…
Enter the Matrix: Factorization Uncovers Knowledge from Omics
Omics data contain signals from the molecular, physical, and kinetic inter- and intracellular interactions that control biological systems. Matrix factorization (MF) techniquescan reveal low-dimensional structure from high-dimensional data that reflect these interactions. These techniques can uncove...
Autores principales: | Stein-O’Brien, Genevieve L., Arora, Raman, Culhane, Aedin C., Favorov, Alexander V., Garmire, Lana X., Greene, Casey S., Goff, Loyal A., Li, Yifeng, Ngom, Aloune, Ochs, Michael F., Xu, Yanxun, Fertig, Elana J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309559/ https://www.ncbi.nlm.nih.gov/pubmed/30143323 http://dx.doi.org/10.1016/j.tig.2018.07.003 |
Ejemplares similares
-
Hybrid Modeling of Cell Signaling and Transcriptional Reprogramming and Its Application in C. elegans Development
por: Fertig, Elana J., et al.
Publicado: (2011) -
Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets
por: Erbe, Rossin, et al.
Publicado: (2020) -
A multivariate approach to the integration of multi-omics datasets
por: Meng, Chen, et al.
Publicado: (2014) -
Community-wide hackathons to identify central themes in single-cell multi-omics
por: Lê Cao, Kim-Anh, et al.
Publicado: (2021) -
Author Correction: Community-wide hackathons to identify central themes in single-cell multi-omics
por: Cao, Kim-Anh Lê, et al.
Publicado: (2021)