Cargando…
Accounting for proximal variants improves neoantigen prediction
Recent efforts to design personalized cancer immunotherapies use predicted neoantigens, but most neoantigen prediction strategies do not consider proximal (nearby) variants that alter the peptide sequence and may influence neoantigen binding. We evaluated somatic variants from 430 tumors to understa...
Autores principales: | Hundal, Jasreet, Kiwala, Susanna, Feng, Yang-Yang, Liu, Connor J., Govindan, Ramaswamy, Chapman, William C., Uppaluri, Ravindra, Swamidass, S Joshua, Griffith, Obi L., Mardis, Elaine R., Griffith, Malachi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309579/ https://www.ncbi.nlm.nih.gov/pubmed/30510237 http://dx.doi.org/10.1038/s41588-018-0283-9 |
Ejemplares similares
-
Cancer Immunogenomics: Computational Neoantigen Identification and Vaccine Design
por: Hundal, Jasreet, et al.
Publicado: (2017) -
pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
por: Hundal, Jasreet, et al.
Publicado: (2016) -
Best practices for bioinformatic characterization of neoantigens for clinical utility
por: Richters, Megan M., et al.
Publicado: (2019) -
Normalization of drug and therapeutic concepts with Thera-Py
por: Cannon, Matthew, et al.
Publicado: (2023) -
DGIdb 3.0: a redesign and expansion of the drug–gene interaction database
por: Cotto, Kelsy C, et al.
Publicado: (2018)