Cargando…
Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions
We introduce new statistical methods for analyzing genomic datasets that measure many effects in many conditions (e.g., gene expression changes under many treatments). These new methods improve on existing methods by allowing for arbitrary correlations in effect sizes among conditions. This flexible...
Autores principales: | Urbut, Sarah M., Wang, Gao, Carbonetto, Peter, Stephens, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309609/ https://www.ncbi.nlm.nih.gov/pubmed/30478440 http://dx.doi.org/10.1038/s41588-018-0268-8 |
Ejemplares similares
-
Fast and flexible joint fine-mapping of multiple traits via the Sum of Single Effects model
por: Zou, Yuxin, et al.
Publicado: (2023) -
A flexible empirical Bayes approach to multivariate multiple regression, and its improved accuracy in predicting multi-tissue gene expression from genotypes
por: Morgante, Fabio, et al.
Publicado: (2023) -
Integrated Enrichment Analysis of Variants and Pathways in Genome-Wide Association Studies Indicates Central Role for IL-2 Signaling Genes in Type 1 Diabetes, and Cytokine Signaling Genes in Crohn's Disease
por: Carbonetto, Peter, et al.
Publicado: (2013) -
Fine-mapping from summary data with the “Sum of Single Effects” model
por: Zou, Yuxin, et al.
Publicado: (2022) -
Polygenic Modeling with Bayesian Sparse Linear Mixed Models
por: Zhou, Xiang, et al.
Publicado: (2013)