Cargando…

Yeast require redox switching in DNA primase

Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. D...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Brien, Elizabeth, Salay, Lauren E., Epum, Esther A., Friedman, Katherine L., Chazin, Walter J., Barton, Jacqueline K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310810/
https://www.ncbi.nlm.nih.gov/pubmed/30541886
http://dx.doi.org/10.1073/pnas.1810715115
_version_ 1783383497698705408
author O’Brien, Elizabeth
Salay, Lauren E.
Epum, Esther A.
Friedman, Katherine L.
Chazin, Walter J.
Barton, Jacqueline K.
author_facet O’Brien, Elizabeth
Salay, Lauren E.
Epum, Esther A.
Friedman, Katherine L.
Chazin, Walter J.
Barton, Jacqueline K.
author_sort O’Brien, Elizabeth
collection PubMed
description Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S](+) species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo.
format Online
Article
Text
id pubmed-6310810
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-63108102019-01-04 Yeast require redox switching in DNA primase O’Brien, Elizabeth Salay, Lauren E. Epum, Esther A. Friedman, Katherine L. Chazin, Walter J. Barton, Jacqueline K. Proc Natl Acad Sci U S A Physical Sciences Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S](+) species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo. National Academy of Sciences 2018-12-26 2018-12-12 /pmc/articles/PMC6310810/ /pubmed/30541886 http://dx.doi.org/10.1073/pnas.1810715115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
O’Brien, Elizabeth
Salay, Lauren E.
Epum, Esther A.
Friedman, Katherine L.
Chazin, Walter J.
Barton, Jacqueline K.
Yeast require redox switching in DNA primase
title Yeast require redox switching in DNA primase
title_full Yeast require redox switching in DNA primase
title_fullStr Yeast require redox switching in DNA primase
title_full_unstemmed Yeast require redox switching in DNA primase
title_short Yeast require redox switching in DNA primase
title_sort yeast require redox switching in dna primase
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310810/
https://www.ncbi.nlm.nih.gov/pubmed/30541886
http://dx.doi.org/10.1073/pnas.1810715115
work_keys_str_mv AT obrienelizabeth yeastrequireredoxswitchingindnaprimase
AT salaylaurene yeastrequireredoxswitchingindnaprimase
AT epumesthera yeastrequireredoxswitchingindnaprimase
AT friedmankatherinel yeastrequireredoxswitchingindnaprimase
AT chazinwalterj yeastrequireredoxswitchingindnaprimase
AT bartonjacquelinek yeastrequireredoxswitchingindnaprimase