Cargando…

Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults

Lower respiratory tract infections (LRTIs) lead to more deaths each year than any other infectious disease category. Despite this, etiologic LRTI pathogens are infrequently identified due to limitations of existing microbiologic tests. In critically ill patients, noninfectious inflammatory syndromes...

Descripción completa

Detalles Bibliográficos
Autores principales: Langelier, Charles, Kalantar, Katrina L., Moazed, Farzad, Wilson, Michael R., Crawford, Emily D., Deiss, Thomas, Belzer, Annika, Bolourchi, Samaneh, Caldera, Saharai, Fung, Monica, Jauregui, Alejandra, Malcolm, Katherine, Lyden, Amy, Khan, Lillian, Vessel, Kathryn, Quan, Jenai, Zinter, Matt, Chiu, Charles Y., Chow, Eric D., Wilson, Jenny, Miller, Steve, Matthay, Michael A., Pollard, Katherine S., Christenson, Stephanie, Calfee, Carolyn S., DeRisi, Joseph L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310811/
https://www.ncbi.nlm.nih.gov/pubmed/30482864
http://dx.doi.org/10.1073/pnas.1809700115
_version_ 1783383497933586432
author Langelier, Charles
Kalantar, Katrina L.
Moazed, Farzad
Wilson, Michael R.
Crawford, Emily D.
Deiss, Thomas
Belzer, Annika
Bolourchi, Samaneh
Caldera, Saharai
Fung, Monica
Jauregui, Alejandra
Malcolm, Katherine
Lyden, Amy
Khan, Lillian
Vessel, Kathryn
Quan, Jenai
Zinter, Matt
Chiu, Charles Y.
Chow, Eric D.
Wilson, Jenny
Miller, Steve
Matthay, Michael A.
Pollard, Katherine S.
Christenson, Stephanie
Calfee, Carolyn S.
DeRisi, Joseph L.
author_facet Langelier, Charles
Kalantar, Katrina L.
Moazed, Farzad
Wilson, Michael R.
Crawford, Emily D.
Deiss, Thomas
Belzer, Annika
Bolourchi, Samaneh
Caldera, Saharai
Fung, Monica
Jauregui, Alejandra
Malcolm, Katherine
Lyden, Amy
Khan, Lillian
Vessel, Kathryn
Quan, Jenai
Zinter, Matt
Chiu, Charles Y.
Chow, Eric D.
Wilson, Jenny
Miller, Steve
Matthay, Michael A.
Pollard, Katherine S.
Christenson, Stephanie
Calfee, Carolyn S.
DeRisi, Joseph L.
author_sort Langelier, Charles
collection PubMed
description Lower respiratory tract infections (LRTIs) lead to more deaths each year than any other infectious disease category. Despite this, etiologic LRTI pathogens are infrequently identified due to limitations of existing microbiologic tests. In critically ill patients, noninfectious inflammatory syndromes resembling LRTIs further complicate diagnosis. To address the need for improved LRTI diagnostics, we performed metagenomic next-generation sequencing (mNGS) on tracheal aspirates from 92 adults with acute respiratory failure and simultaneously assessed pathogens, the airway microbiome, and the host transcriptome. To differentiate pathogens from respiratory commensals, we developed a rules-based model (RBM) and logistic regression model (LRM) in a derivation cohort of 20 patients with LRTIs or noninfectious acute respiratory illnesses. When tested in an independent validation cohort of 24 patients, both models achieved accuracies of 95.5%. We next developed pathogen, microbiome diversity, and host gene expression metrics to identify LRTI-positive patients and differentiate them from critically ill controls with noninfectious acute respiratory illnesses. When tested in the validation cohort, the pathogen metric performed with an area under the receiver-operating curve (AUC) of 0.96 (95% CI, 0.86–1.00), the diversity metric with an AUC of 0.80 (95% CI, 0.63–0.98), and the host transcriptional classifier with an AUC of 0.88 (95% CI, 0.75–1.00). Combining these achieved a negative predictive value of 100%. This study suggests that a single streamlined protocol offering an integrated genomic portrait of pathogen, microbiome, and host transcriptome may hold promise as a tool for LRTI diagnosis.
format Online
Article
Text
id pubmed-6310811
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-63108112019-01-04 Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults Langelier, Charles Kalantar, Katrina L. Moazed, Farzad Wilson, Michael R. Crawford, Emily D. Deiss, Thomas Belzer, Annika Bolourchi, Samaneh Caldera, Saharai Fung, Monica Jauregui, Alejandra Malcolm, Katherine Lyden, Amy Khan, Lillian Vessel, Kathryn Quan, Jenai Zinter, Matt Chiu, Charles Y. Chow, Eric D. Wilson, Jenny Miller, Steve Matthay, Michael A. Pollard, Katherine S. Christenson, Stephanie Calfee, Carolyn S. DeRisi, Joseph L. Proc Natl Acad Sci U S A PNAS Plus Lower respiratory tract infections (LRTIs) lead to more deaths each year than any other infectious disease category. Despite this, etiologic LRTI pathogens are infrequently identified due to limitations of existing microbiologic tests. In critically ill patients, noninfectious inflammatory syndromes resembling LRTIs further complicate diagnosis. To address the need for improved LRTI diagnostics, we performed metagenomic next-generation sequencing (mNGS) on tracheal aspirates from 92 adults with acute respiratory failure and simultaneously assessed pathogens, the airway microbiome, and the host transcriptome. To differentiate pathogens from respiratory commensals, we developed a rules-based model (RBM) and logistic regression model (LRM) in a derivation cohort of 20 patients with LRTIs or noninfectious acute respiratory illnesses. When tested in an independent validation cohort of 24 patients, both models achieved accuracies of 95.5%. We next developed pathogen, microbiome diversity, and host gene expression metrics to identify LRTI-positive patients and differentiate them from critically ill controls with noninfectious acute respiratory illnesses. When tested in the validation cohort, the pathogen metric performed with an area under the receiver-operating curve (AUC) of 0.96 (95% CI, 0.86–1.00), the diversity metric with an AUC of 0.80 (95% CI, 0.63–0.98), and the host transcriptional classifier with an AUC of 0.88 (95% CI, 0.75–1.00). Combining these achieved a negative predictive value of 100%. This study suggests that a single streamlined protocol offering an integrated genomic portrait of pathogen, microbiome, and host transcriptome may hold promise as a tool for LRTI diagnosis. National Academy of Sciences 2018-12-26 2018-11-27 /pmc/articles/PMC6310811/ /pubmed/30482864 http://dx.doi.org/10.1073/pnas.1809700115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle PNAS Plus
Langelier, Charles
Kalantar, Katrina L.
Moazed, Farzad
Wilson, Michael R.
Crawford, Emily D.
Deiss, Thomas
Belzer, Annika
Bolourchi, Samaneh
Caldera, Saharai
Fung, Monica
Jauregui, Alejandra
Malcolm, Katherine
Lyden, Amy
Khan, Lillian
Vessel, Kathryn
Quan, Jenai
Zinter, Matt
Chiu, Charles Y.
Chow, Eric D.
Wilson, Jenny
Miller, Steve
Matthay, Michael A.
Pollard, Katherine S.
Christenson, Stephanie
Calfee, Carolyn S.
DeRisi, Joseph L.
Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
title Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
title_full Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
title_fullStr Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
title_full_unstemmed Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
title_short Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
title_sort integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults
topic PNAS Plus
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310811/
https://www.ncbi.nlm.nih.gov/pubmed/30482864
http://dx.doi.org/10.1073/pnas.1809700115
work_keys_str_mv AT langeliercharles integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT kalantarkatrinal integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT moazedfarzad integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT wilsonmichaelr integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT crawfordemilyd integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT deissthomas integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT belzerannika integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT bolourchisamaneh integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT calderasaharai integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT fungmonica integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT jaureguialejandra integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT malcolmkatherine integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT lydenamy integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT khanlillian integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT vesselkathryn integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT quanjenai integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT zintermatt integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT chiucharlesy integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT chowericd integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT wilsonjenny integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT millersteve integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT matthaymichaela integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT pollardkatherines integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT christensonstephanie integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT calfeecarolyns integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults
AT derisijosephl integratinghostresponseandunbiasedmicrobedetectionforlowerrespiratorytractinfectiondiagnosisincriticallyilladults