Cargando…
Age-related changes in the intrinsic functional connectivity of the human ventral vs. dorsal striatum from childhood to middle age
The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310902/ https://www.ncbi.nlm.nih.gov/pubmed/25257972 http://dx.doi.org/10.1016/j.dcn.2014.08.011 |
Sumario: | The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined using resting state intrinsic functional connectivity (iFC) imaging in 106 healthy individuals, ages 9–44. Broadly, the dorsal striatum (DS) is connected to prefrontal and parietal cortices and contributes to cognitive processes; the ventral striatum (VS) is connected to medial orbitofrontal and anterior cingulate cortices, and contributes to affective valuation and motivation. Findings revealed patterns of age-related changes that differed between VS and DS iFCs. We found an age-related increase in DS iFC with posterior cingulate cortex (pCC) that stabilized after the mid-twenties, but a decrease in VS iFC with anterior insula (aIns) and dorsal anterior cingulate cortex (dACC) that persisted into mid-adulthood. These distinct developmental trajectories of VS vs. DS iFC might underlie adolescents’ unique behavioral patterns and vulnerabilities to psychopathology, and also speaks to changes in motivational networks that extend well past 25 years old. |
---|