Cargando…

Recapitulation of methotrexate hepatotoxicity with induced pluripotent stem cell-derived hepatocytes from patients with rheumatoid arthritis

BACKGROUND: Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis (RA). The drug is cost-effective, but sometimes causes hepatotoxicity, requiring a physician’s attention. In this study, we simulated hepatotoxicity by treating hepatocytes derived from RA patient–derived induced...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Juryun, Kim, Yena, Choi, Jinhyeok, Jung, Hyerin, Lee, Kijun, Kang, Jaewoo, Park, Narae, Rim, Yeri Alice, Nam, Yoojun, Ju, Ji Hyeon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310944/
https://www.ncbi.nlm.nih.gov/pubmed/30594247
http://dx.doi.org/10.1186/s13287-018-1100-1
Descripción
Sumario:BACKGROUND: Methotrexate (MTX) is widely used for the treatment of rheumatoid arthritis (RA). The drug is cost-effective, but sometimes causes hepatotoxicity, requiring a physician’s attention. In this study, we simulated hepatotoxicity by treating hepatocytes derived from RA patient–derived induced pluripotent stem cells (RA-iPSCs) with MTX. METHODS: RA-iPSCs and healthy control iPSCs (HC-iPSCs) were established successfully. RA-iPSCs were differentiated into hepatocytes in two-dimensional (2D) monolayers and three-dimensional (3D) hepatocyte spheroid cultures; this process required growth factors such as BMP4, bFGF, HGF, and OSM. Immunofluorescence staining and flow cytometry were performed to confirm that the mature hepatocytes expressed cytokeratin 18, anti–alpha-1 antitrypsin, and albumin. MTX toxicity was evaluated via monitoring of cell viability, alanine aminotransferase, and mitochondrial status after MTX treatment in 2D and 3D cultures. RESULTS: RA-iPSCs generated from three RA patients suffering from MTX-induced hepatotoxicity differentiated into the endoderm lineage, hepatoblasts, and hepatocytes. In 2D culture, RA-iPSC-derived hepatocytes were more sensitive to MTX than healthy controls. A 3D culture system using hepatocyte spheroids also successfully recapitulated MTX-induced hepatotoxicity. The 3D culture system had several advantages, including longer culture periods under more complex conditions. CONCLUSIONS: A patient-derived iPSC platform could recapitulate MTX toxicity. Simulation of drug toxicity in vitro may help clinicians choose safer drugs or less toxic doses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13287-018-1100-1) contains supplementary material, which is available to authorized users.