Cargando…

Downregulation of TGF-β1 suppressed proliferation and increased chemosensitivity of ovarian cancer cells by promoting BRCA1/Smad3 signaling

BACKGROUND: Studies have demonstrated that transforming growth factor beta-1 (TGF-β1) exhibits oncogenic activity in different types of cancer, including ovarian cancer (OC). However, its regulatory mechanism in OC and whether TGF-β1 is involved in chemosensitivity regulation remains unclear. Thus,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanqiu, Xiang, Jun, Wang, Jianjun, Ji, Yazhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310971/
https://www.ncbi.nlm.nih.gov/pubmed/30594239
http://dx.doi.org/10.1186/s40659-018-0205-4
Descripción
Sumario:BACKGROUND: Studies have demonstrated that transforming growth factor beta-1 (TGF-β1) exhibits oncogenic activity in different types of cancer, including ovarian cancer (OC). However, its regulatory mechanism in OC and whether TGF-β1 is involved in chemosensitivity regulation remains unclear. Thus, the aim of this study was to investigate the role of TGF-β1 in OC. METHODS: The OC cell line SKOV3 was employed, and TGF-β1 overexpression or knockdown vectors were constructed. The cell proliferation of SKOV3 was evaluated with the cell counting kit (CCK8) kit after treatment with different concentrations of cis-platinum. Western blot and protein immunoprecipitation were employed to detect changes in BRCA1 and Smad3 expression and their interactions. Tumor growth in nude mice was evaluated. RESULTS: The results showed that TGF-β1 knockdown increased chemosensitivity by promoting BRCA1 expression and Smad3 phosphorylation. In vivo studies showed that TGF-β1 knockdown significantly inhibited the growth of tumors, also by upregulating BRCA1 expression and Smad3 phosphorylation. CONCLUSION: Taken together, our results suggest that TGF-β1 knockdown inhibits tumor growth and increases chemosensitivity by promotion of BRCA1/Smad3 signaling.