Cargando…

Reduced nuclear DNA methylation and mitochondrial transcript changes in adenomas do not associate with mtDNA methylation

BACKGROUND: Altered mitochondrial function and large-scale changes to DNA methylation patterns in the nuclear genome are both hallmarks of colorectal cancer (CRC). Mitochondria have multiple copies of a 16 kb circular genome that contains genes that are vital for their function. While DNA methylatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Morris, M. J., Hesson, L. B., Poulos, R. C., Ward, R. L., Wong, J. W. H., Youngson, N. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311003/
https://www.ncbi.nlm.nih.gov/pubmed/30619609
http://dx.doi.org/10.1186/s40364-018-0151-x
Descripción
Sumario:BACKGROUND: Altered mitochondrial function and large-scale changes to DNA methylation patterns in the nuclear genome are both hallmarks of colorectal cancer (CRC). Mitochondria have multiple copies of a 16 kb circular genome that contains genes that are vital for their function. While DNA methylation is known to alter the nuclear genome in CRC, it is not clear whether it could have a similar influence in mtDNA; indeed, currently, the issue of whether mitochondrial genome (mtDNA) methylation occurs is controversial. Thus our goal here was to determine whether the methylation state of mtDNA is linked to mitochondrial gene transcription in colorectal adenomas, and to assess its suitability as a biomarker in CRC. METHODS: To investigate the relationship between DNA methylation and mitochondrial transcripts in adenomas, we performed RNA-sequencing and Whole Genome Bisulphite Sequencing (WGBS) of mtDNA-enriched DNA from normal mucosa and paired adenoma patient samples. RESULTS: Transcriptional profiling indicated that adenomas had reduced mitochondrial proton transport versus normal mucosa, consistent with altered mitochondrial function. The expression of 3 tRNAs that are transcribed from mtDNA were also decreased in adenoma. Overall methylation of CG dinucleotides in the nuclear genome was reduced in adenomas (68%) compared to normal mucosa (75%, P < 0.01). Methylation in mtDNA was low (1%) in both normal and adenoma tissue but we observed clusters of higher methylation at the ribosomal RNA genes. Levels of methylation within these regions did not differ between normal and adenoma tissue. CONCLUSIONS: We provide evidence that low-level methylation of specific sites does exist in the mitochondrial genome but that it is not associated with mitochondrial gene transcription changes in adenomas. Furthermore, as no large scale changes to mtDNA methylation were observed it is unlikely to be a suitable biomarker for early-stage CRC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40364-018-0151-x) contains supplementary material, which is available to authorized users.