Cargando…
Towards efficient human–machine collaboration: effects of gaze-driven feedback and engagement on performance
Referential success is crucial for collaborative task-solving in shared environments. In face-to-face interactions, humans, therefore, exploit speech, gesture, and gaze to identify a specific object. We investigate if and how the gaze behavior of a human interaction partner can be used by a gaze-awa...
Autores principales: | Mitev, Nikolina, Renner, Patrick, Pfeiffer, Thies, Staudte, Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311170/ https://www.ncbi.nlm.nih.gov/pubmed/30594976 http://dx.doi.org/10.1186/s41235-018-0148-x |
Ejemplares similares
-
Eye’ll Help You Out! How the Gaze Cue Reduces the Cognitive Load Required for Reference Processing
por: Sekicki, Mirjana, et al.
Publicado: (2018) -
Utilizing Interactive Surfaces to Enhance Learning, Collaboration and Engagement: Insights from Learners’ Gaze and Speech
por: Sharma, Kshitij, et al.
Publicado: (2020) -
Gazing toward the future
por: Federmeier, Kara D, et al.
Publicado: (2020) -
LiteGaze: Neural architecture search for efficient gaze estimation
por: Guo, Xinwei, et al.
Publicado: (2023) -
Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback
por: Zeng, Hong, et al.
Publicado: (2017)