Cargando…
Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces
In this article, we establish sufficient conditions on the generalized Cesáro and Orlicz sequence spaces [Formula: see text] such that the class [Formula: see text] of all bounded linear operators between arbitrary Banach spaces with its sequence of s-numbers belonging to [Formula: see text] generat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311191/ https://www.ncbi.nlm.nih.gov/pubmed/30839889 http://dx.doi.org/10.1186/s13660-018-1945-y |
_version_ | 1783383565019381760 |
---|---|
author | Faried, Nashat Bakery, Awad A. |
author_facet | Faried, Nashat Bakery, Awad A. |
author_sort | Faried, Nashat |
collection | PubMed |
description | In this article, we establish sufficient conditions on the generalized Cesáro and Orlicz sequence spaces [Formula: see text] such that the class [Formula: see text] of all bounded linear operators between arbitrary Banach spaces with its sequence of s-numbers belonging to [Formula: see text] generates an operator ideal. The components of [Formula: see text] as a pre-quasi Banach operator ideal containing finite dimensional operators as a dense subset and its completeness are proved. Some inclusion relations between the operator ideals as well as the inclusion relations for their duals are obtained. Finally, we show that the operator ideal formed by [Formula: see text] and approximation numbers is small under certain conditions. |
format | Online Article Text |
id | pubmed-6311191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-63111912019-01-10 Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces Faried, Nashat Bakery, Awad A. J Inequal Appl Research In this article, we establish sufficient conditions on the generalized Cesáro and Orlicz sequence spaces [Formula: see text] such that the class [Formula: see text] of all bounded linear operators between arbitrary Banach spaces with its sequence of s-numbers belonging to [Formula: see text] generates an operator ideal. The components of [Formula: see text] as a pre-quasi Banach operator ideal containing finite dimensional operators as a dense subset and its completeness are proved. Some inclusion relations between the operator ideals as well as the inclusion relations for their duals are obtained. Finally, we show that the operator ideal formed by [Formula: see text] and approximation numbers is small under certain conditions. Springer International Publishing 2018-12-29 2018 /pmc/articles/PMC6311191/ /pubmed/30839889 http://dx.doi.org/10.1186/s13660-018-1945-y Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Faried, Nashat Bakery, Awad A. Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces |
title | Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces |
title_full | Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces |
title_fullStr | Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces |
title_full_unstemmed | Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces |
title_short | Small operator ideals formed by s numbers on generalized Cesáro and Orlicz sequence spaces |
title_sort | small operator ideals formed by s numbers on generalized cesáro and orlicz sequence spaces |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311191/ https://www.ncbi.nlm.nih.gov/pubmed/30839889 http://dx.doi.org/10.1186/s13660-018-1945-y |
work_keys_str_mv | AT fariednashat smalloperatoridealsformedbysnumbersongeneralizedcesaroandorliczsequencespaces AT bakeryawada smalloperatoridealsformedbysnumbersongeneralizedcesaroandorliczsequencespaces |