Cargando…
A Neural Machine Translation Model for Arabic Dialects That Utilises Multitask Learning (MTL)
In this research article, we study the problem of employing a neural machine translation model to translate Arabic dialects to modern standard Arabic. The proposed solution of the neural machine translation model is prompted by the recurrent neural network-based encoder-decoder neural machine transl...
Autores principales: | Baniata, Laith H., Park, Seyoung, Park, Seong-Bae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311304/ https://www.ncbi.nlm.nih.gov/pubmed/30643518 http://dx.doi.org/10.1155/2018/7534712 |
Ejemplares similares
-
A Transformer-Based Neural Machine Translation Model for Arabic Dialects That Utilizes Subword Units
por: Baniata, Laith H., et al.
Publicado: (2021) -
A Novel Framework for Arabic Dialect Chatbot Using Machine Learning
por: Alhassan, Nadrh Abdullah, et al.
Publicado: (2022) -
COVID-MTL: Multitask learning with Shift3D and random-weighted loss for COVID-19 diagnosis and severity assessment
por: Bao, Guoqing, et al.
Publicado: (2022) -
Improving Neural Machine Translation for Low Resource Algerian Dialect by Transductive Transfer Learning Strategy
por: Slim, Amel, et al.
Publicado: (2022) -
Novel Techniques for Dialectal Arabic Speech Recognition
por: Elmahdy, Mohamed, et al.
Publicado: (2012)