Cargando…

Mesenchymal stem cell-derived extracellular vesicles may promote breast cancer cell dormancy

Disseminated breast cancer cells have the capacity to metastasise to the bone marrow and reside in a dormant state within the mesenchymal stem cell niche. Research has focussed on paracrine signalling factors, such as soluble proteins, within the microenvironment. However, it is now clear extracellu...

Descripción completa

Detalles Bibliográficos
Autores principales: Casson, Jake, Davies, Owen G, Smith, Carol-Anne, Dalby, Matthew J, Berry, Catherine C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311537/
https://www.ncbi.nlm.nih.gov/pubmed/30627418
http://dx.doi.org/10.1177/2041731418810093
Descripción
Sumario:Disseminated breast cancer cells have the capacity to metastasise to the bone marrow and reside in a dormant state within the mesenchymal stem cell niche. Research has focussed on paracrine signalling factors, such as soluble proteins, within the microenvironment. However, it is now clear extracellular vesicles secreted by resident mesenchymal stem cells into this microenvironment also play a key role in the initiation of dormancy. Dormancy encourages reduced cell proliferation and migration, while upregulating cell adhesion, thus retaining the cancer cells within the bone marrow microenvironment. Here, MCF7 breast cancer cells were treated with mesenchymal stem cell–derived extracellular vesicles, resulting in reduced migration in two-dimensional and three-dimensional culture, with reduced cell proliferation and enhanced adhesion, collectively supporting cancer cell dormancy.