Cargando…

Potential of Peptide Nucleic Acids in Future Therapeutic Applications

Peptide nucleic acids (PNA) are synthetic analog of DNA with a repeating N-(2-aminoethyl)-glycine peptide backbone connected to purine and pyrimidine nucleobases via a linker. Considering the unique properties of PNA, including resistance to enzymatic digestion, higher biostability combined with gre...

Descripción completa

Detalles Bibliográficos
Autores principales: Montazersaheb, Soheila, Hejazi, Mohammad Saeid, Nozad Charoudeh, Hojjatollah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tabriz University of Medical Sciences 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311635/
https://www.ncbi.nlm.nih.gov/pubmed/30607328
http://dx.doi.org/10.15171/apb.2018.064
Descripción
Sumario:Peptide nucleic acids (PNA) are synthetic analog of DNA with a repeating N-(2-aminoethyl)-glycine peptide backbone connected to purine and pyrimidine nucleobases via a linker. Considering the unique properties of PNA, including resistance to enzymatic digestion, higher biostability combined with great hybridization affinity toward DNA and RNA, it has attracted great attention toward PNA- based technology as a promising approach for gene alteration. However, an important challenge in utilizing PNA is poor intracellular uptake. Therefore, some strategies have been developed to enhance the delivery of PNA in order to reach cognate site. Although PNAs primarily demonstrated to act as an antisense and antigene agents for inhibition of transcription and translation of target genes, more therapeutic applications such as splicing modulation and gene editing are also used to produce specific genome modifications. Hence, several approaches based on PNAs technology have been designed for these purposes. This review briefly presents the properties and characteristics of PNA as well as different gene modulation mechanisms. Thereafter, current status of successful therapeutic applications of PNA as gene therapeutic intervention in different research areas with special interest in medical application in particular, anti-cancer therapy are discussed. Then it focuses on possible use of PNA as anti-mir agent and PNA-based strategies against clinically important bacteria.