Cargando…

Ex Vivo Evaluation of Secretion-Clearing Device in Reducing Airway Resistance within Endotracheal Tubes

BACKGROUND: Secretions accumulate in endotracheal tubes' (ETT) lumens upon their placement in patients. The secretions impact airway resistance and pressure. Secretions potentiate prolonged mechanical ventilation and ventilator-associated pneumonia. Our primary objective in this study was to ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Waters, Christopher, Wiener, R. Constance, Motlagh, Hamed M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311789/
https://www.ncbi.nlm.nih.gov/pubmed/30652032
http://dx.doi.org/10.1155/2018/3258396
Descripción
Sumario:BACKGROUND: Secretions accumulate in endotracheal tubes' (ETT) lumens upon their placement in patients. The secretions impact airway resistance and pressure. Secretions potentiate prolonged mechanical ventilation and ventilator-associated pneumonia. Our primary objective in this study was to evaluate an ETT-clearing device (ETT-CD) in its ability to remove secretions from ex vivo ETT lumens. METHODS: Forty ETTs, obtained from intensive care patients at extubation, were individually placed into a ventilator field performance testing simulator at 37°C. The pressure drop through the ETTs was measured at a flow rate of 60 L/min before and after cleaning with the ETT-CD and compared with unused, similarly sized controls tubes. The ETT-CD was inserted into an ETT until the tip reached Murphy's eye (hole in the side) of the ETT. The wiper, set back from the tip, was expanded by ETT-CD handle activation. As the ETT-CD was removed, the distal wiper extracted secretions from the ETT lumen. RESULTS: Forty ETTs were tested with nonparametric Wilcoxon signed-rank tests. Before being cleared with the ETT-CD, the median pressure drop in the extubated 7.5 mm ETTs was 17.8 cm H(2)O; after ETT-CD use, it was 12.3. The cleared ETTs were significantly improved over the ETTs before being cleared (p < 0.001); however, there remained a significant difference between the cleared ETTs and the control tubes (p=0.005), indicating the clearing was not to the level of an unused ETT. Similar results were determined for the 8.0 mm ETTs. CONCLUSIONS: For the 7.5 mm and the 8.0 mm EETs, the ETT-CD improved effective patency of the ETTs over the uncleared ETTs, independent of occlusion location, tube size, or length of tube. However, there remained a significant difference between the cleared tubes and controls.