Cargando…
Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework
Fusing multichannel neurophysiological signals to recognize human emotion states becomes increasingly attractive. The conventional methods ignore the complementarity between time domain characteristics, frequency domain characteristics, and time-frequency characteristics of electroencephalogram (EEG...
Autores principales: | Chao, Hao, Zhi, Huilai, Dong, Liang, Liu, Yongli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311795/ https://www.ncbi.nlm.nih.gov/pubmed/30647727 http://dx.doi.org/10.1155/2018/9750904 |
Ejemplares similares
-
Applying TS-DBN model into sports behavior recognition with deep learning approach
por: Guo, Yingqing, et al.
Publicado: (2021) -
Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals
por: Wei, Wei, et al.
Publicado: (2018) -
Emotion recognition from multichannel EEG signals using K-nearest neighbor classification
por: Li, Mi, et al.
Publicado: (2018) -
Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2023) -
Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
por: Shen, Fangyao, et al.
Publicado: (2021)