Cargando…
Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats
It is common for food to be made more palatable through the use of the flavour enhancer monosodium glutamate, also known as vetsin powder. The purpose of the study described in this paper was to explore how vetsin-induced hepatic toxicity, DNA fragmentation, damage, and oxidative stress modification...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311796/ https://www.ncbi.nlm.nih.gov/pubmed/30647808 http://dx.doi.org/10.1155/2018/4501097 |
_version_ | 1783383670975889408 |
---|---|
author | Albrahim, Tarfa Binobead, Manal Abdulaziz |
author_facet | Albrahim, Tarfa Binobead, Manal Abdulaziz |
author_sort | Albrahim, Tarfa |
collection | PubMed |
description | It is common for food to be made more palatable through the use of the flavour enhancer monosodium glutamate, also known as vetsin powder. The purpose of the study described in this paper was to explore how vetsin-induced hepatic toxicity, DNA fragmentation, damage, and oxidative stress modifications could be mitigated with moringa leaf extract (MLE). To that end, 40 male rats were separated into four groups: normal control, positive control or MLE, vetsin, and vetsin combined with MLE. Results indicated that, compared to the control group, the levels of serum alanine aminotransferase (ALT), aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), liver malondialdehyde (MDA), DNA damage, injury, PCNA, and P53 expressions were significantly enhanced by the administration of vetsin (P < 0.05). However, the vetsin group had significantly reduced levels of albumin, globulin, total protein, liver glutathione (GSH), superoxide dismutase enzyme (SOD), catalase, and glutathione S-transferase (GST) enzyme activities (P < 0.05) by comparison to control. Meanwhile, modifications in liver functions, oxidative stress, DNA damage, liver injury, and PCNA expression were alleviated when vetsin was administered alongside MLE. The authors conclude that vetsin may have many side effects and that MLE can ameliorate biochemical changes, oxidative stress, hepatic injury, PCNA, and P53 alterations induced by vetsin administration. |
format | Online Article Text |
id | pubmed-6311796 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-63117962019-01-15 Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats Albrahim, Tarfa Binobead, Manal Abdulaziz Oxid Med Cell Longev Research Article It is common for food to be made more palatable through the use of the flavour enhancer monosodium glutamate, also known as vetsin powder. The purpose of the study described in this paper was to explore how vetsin-induced hepatic toxicity, DNA fragmentation, damage, and oxidative stress modifications could be mitigated with moringa leaf extract (MLE). To that end, 40 male rats were separated into four groups: normal control, positive control or MLE, vetsin, and vetsin combined with MLE. Results indicated that, compared to the control group, the levels of serum alanine aminotransferase (ALT), aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), liver malondialdehyde (MDA), DNA damage, injury, PCNA, and P53 expressions were significantly enhanced by the administration of vetsin (P < 0.05). However, the vetsin group had significantly reduced levels of albumin, globulin, total protein, liver glutathione (GSH), superoxide dismutase enzyme (SOD), catalase, and glutathione S-transferase (GST) enzyme activities (P < 0.05) by comparison to control. Meanwhile, modifications in liver functions, oxidative stress, DNA damage, liver injury, and PCNA expression were alleviated when vetsin was administered alongside MLE. The authors conclude that vetsin may have many side effects and that MLE can ameliorate biochemical changes, oxidative stress, hepatic injury, PCNA, and P53 alterations induced by vetsin administration. Hindawi 2018-12-17 /pmc/articles/PMC6311796/ /pubmed/30647808 http://dx.doi.org/10.1155/2018/4501097 Text en Copyright © 2018 Tarfa Albrahim and Manal Abdulaziz Binobead. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Albrahim, Tarfa Binobead, Manal Abdulaziz Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats |
title | Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats |
title_full | Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats |
title_fullStr | Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats |
title_full_unstemmed | Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats |
title_short | Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats |
title_sort | roles of moringa oleifera leaf extract in improving the impact of high dietary intake of monosodium glutamate-induced liver toxicity, oxidative stress, genotoxicity, dna damage, and pcna alterations in male rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311796/ https://www.ncbi.nlm.nih.gov/pubmed/30647808 http://dx.doi.org/10.1155/2018/4501097 |
work_keys_str_mv | AT albrahimtarfa rolesofmoringaoleiferaleafextractinimprovingtheimpactofhighdietaryintakeofmonosodiumglutamateinducedlivertoxicityoxidativestressgenotoxicitydnadamageandpcnaalterationsinmalerats AT binobeadmanalabdulaziz rolesofmoringaoleiferaleafextractinimprovingtheimpactofhighdietaryintakeofmonosodiumglutamateinducedlivertoxicityoxidativestressgenotoxicitydnadamageandpcnaalterationsinmalerats |