Cargando…
Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques
BACKGROUND: Cyclic peptide-based drug discovery is attracting increasing interest owing to its potential to avoid target protein depletion. In drug discovery, it is important to maintain the biostability of a drug within the proper range. Plasma protein binding (PPB) is the most important index of b...
Autores principales: | Tajimi, Takashi, Wakui, Naoki, Yanagisawa, Keisuke, Yoshikawa, Yasushi, Ohue, Masahito, Akiyama, Yutaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311893/ https://www.ncbi.nlm.nih.gov/pubmed/30598072 http://dx.doi.org/10.1186/s12859-018-2529-z |
Ejemplares similares
-
Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning
por: Li, Jianan, et al.
Publicado: (2021) -
Lipid Composition
Is Critical for Accurate Membrane
Permeability Prediction of Cyclic Peptides by Molecular Dynamics Simulations
por: Sugita, Masatake, et al.
Publicado: (2022) -
CycPeptMPDB: A
Comprehensive Database of Membrane
Permeability of Cyclic Peptides
por: Li, Jianan, et al.
Publicado: (2023) -
Effective Protein–Ligand
Docking Strategy via
Fragment Reuse and a Proof-of-Concept Implementation
por: Yanagisawa, Keisuke, et al.
Publicado: (2022) -
MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions
por: Hayashi, Takanori, et al.
Publicado: (2018)