Cargando…
A unified solution for different scenarios of predicting drug-target interactions via triple matrix factorization
BACKGROUND: During the identification of potential candidates, computational prediction of drug-target interactions (DTIs) is important to subsequent expensive validation in wet-lab. DTI screening considers four scenarios, depending on whether the drug is an existing or a new drug and whether the ta...
Autores principales: | Shi, Jian-Yu, Zhang, An-Qi, Zhang, Shao-Wu, Mao, Kui-Tao, Yiu, Siu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311903/ https://www.ncbi.nlm.nih.gov/pubmed/30598094 http://dx.doi.org/10.1186/s12918-018-0663-x |
Ejemplares similares
-
TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
Detecting drug communities and predicting comprehensive drug–drug interactions via balance regularized semi-nonnegative matrix factorization
por: Shi, Jian-Yu, et al.
Publicado: (2019) -
Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization
por: Yu, Hui, et al.
Publicado: (2018) -
An Integrated Local Classification Model of Predicting Drug-Drug Interactions via Dempster-Shafer Theory of Evidence
por: Shi, Jian-Yu, et al.
Publicado: (2018) -
Predicting binary, discrete and continued lncRNA-disease associations via a unified framework based on graph regression
por: Shi, Jian-Yu, et al.
Publicado: (2017)