Cargando…
Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model
BACKGROUND: With the maturity of next generation sequencing technology, a huge amount of epigenomic data have been generated by several large consortia in the last decade. These plenty resources leave us the opportunity about sufficiently utilizing those data to explore biological problems. RESULTS:...
Autores principales: | Wang, Can, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311906/ https://www.ncbi.nlm.nih.gov/pubmed/30598107 http://dx.doi.org/10.1186/s12864-018-5274-9 |
Ejemplares similares
-
Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models
por: Wang, Hongyan, et al.
Publicado: (2013) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Hidden Markov Modeling with HMMTeacher
por: Fuentes-Beals, Camilo, et al.
Publicado: (2022) -
MORPH: Probabilistic Alignment Combined with Hidden Markov Models of cis-Regulatory Modules
por: Sinha, Saurabh, et al.
Publicado: (2007) -
Hidden Markov Model Variants and their Application
por: Winters-Hilt, Stephen
Publicado: (2006)