Cargando…
Improvement of cancer subtype prediction by incorporating transcriptome expression data and heterogeneous biological networks
BACKGROUND: Identification of cancer subtypes is of great importance to facilitate cancer diagnosis and therapy. A number of methods have been proposed to integrate multi-sources data to identify cancer subtypes in recent years. However, few of them consider the regulatory associations between genom...
Autores principales: | Guo, Yang, Qi, Yang, Li, Zhanhuai, Shang, Xuequn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311915/ https://www.ncbi.nlm.nih.gov/pubmed/30598111 http://dx.doi.org/10.1186/s12920-018-0435-x |
Ejemplares similares
-
BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data
por: Guo, Yang, et al.
Publicado: (2018) -
A Similarity Regression Fusion Model for Integrating Multi-Omics Data to Identify Cancer Subtypes
por: Guo, Yang, et al.
Publicado: (2018) -
A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data
por: Qi, Yang, et al.
Publicado: (2020) -
Identification of Colon Cancer-Related RNAs Based on Heterogeneous Networks and Random Walk
por: Chen, Bolin, et al.
Publicado: (2022) -
Improve the model of disease subtype heterogeneity by leveraging external summary data
por: Fu, Sheng, et al.
Publicado: (2023)