Cargando…
Laplacian normalization and bi-random walks on heterogeneous networks for predicting lncRNA-disease associations
BACKGROUND: Evidences have increasingly indicated that lncRNAs (long non-coding RNAs) are deeply involved in important biological regulation processes leading to various human complex diseases. Experimental investigations of these disease associated lncRNAs are slow with high costs. Computational me...
Autores principales: | Wen, Yaping, Han, Guosheng, Anh, Vo V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311918/ https://www.ncbi.nlm.nih.gov/pubmed/30598088 http://dx.doi.org/10.1186/s12918-018-0660-0 |
Ejemplares similares
-
Predicting LncRNA–Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks
por: Yao, Yuhua, et al.
Publicado: (2021) -
BRWLDA: bi-random walks for predicting lncRNA-disease associations
por: Yu, Guoxian, et al.
Publicado: (2017) -
Prediction of lncRNA-disease association based on a Laplace normalized random walk with restart algorithm on heterogeneous networks
por: Wang, Liugen, et al.
Publicado: (2022) -
Finding Lung-Cancer-Related lncRNAs Based on Laplacian Regularized Least Squares With Unbalanced Bi-Random Walk
por: Guo, Zhifeng, et al.
Publicado: (2022) -
MSF-UBRW: An Improved Unbalanced Bi-Random Walk Method to Infer Human lncRNA-Disease Associations
por: Dai, Lingyun, et al.
Publicado: (2022)