Cargando…
A context-free encoding scheme of protein sequences for predicting antigenicity of diverse influenza A viruses
BACKGROUND: The evolution of influenza A viruses leads to the antigenic changes. Serological diagnosis of the antigenicity is usually labor-intensive, time-consuming and not suitable for early-stage detection. Computational prediction of the antigenic relationship between emerging and old strains of...
Autores principales: | Zhou, Xinrui, Yin, Rui, Kwoh, Chee-Keong, Zheng, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311925/ https://www.ncbi.nlm.nih.gov/pubmed/30598102 http://dx.doi.org/10.1186/s12864-018-5282-9 |
Ejemplares similares
-
Predicting antigenic variants of H1N1 influenza virus based on epidemics and pandemics using a stacking model
por: Yin, Rui, et al.
Publicado: (2018) -
Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses
por: Chen, Haifen, et al.
Publicado: (2016) -
HopPER: an adaptive model for probability estimation of influenza reassortment through host prediction
por: Yin, Rui, et al.
Publicado: (2020) -
Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses
por: Zhou, Xinrui, et al.
Publicado: (2018) -
Exploring the Lethality of Human-Adapted Coronavirus Through Alignment-Free Machine Learning Approaches Using Genomic Sequences
por: Yin, Rui, et al.
Publicado: (2021)