Cargando…
Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases
BACKGROUND: Early and accurate identification of potential adverse drug reactions (ADRs) for combined medication is vital for public health. Existing methods either rely on expensive wet-lab experiments or detecting existing associations from related records. Thus, they inevitably suffer under-repor...
Autores principales: | Zheng, Yi, Peng, Hui, Zhang, Xiaocai, Zhao, Zhixun, Yin, Jie, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311930/ https://www.ncbi.nlm.nih.gov/pubmed/30598065 http://dx.doi.org/10.1186/s12859-018-2520-8 |
Ejemplares similares
-
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
por: Zheng, Yi, et al.
Publicado: (2019) -
Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces
por: Zheng, Yi, et al.
Publicado: (2019) -
Identification of lung cancer gene markers through kernel maximum mean discrepancy and information entropy
por: Zhao, Zhixun, et al.
Publicado: (2019) -
Accurate prediction of DNA N(4)-methylcytosine sites via boost-learning various types of sequence features
por: Zhao, Zhixun, et al.
Publicado: (2020) -
Mining drug–target and drug–adverse drug reaction databases to identify target–adverse drug reaction relationships
por: Galletti, Cristiano, et al.
Publicado: (2021)