Cargando…

Computational drug repositioning using meta-path-based semantic network analysis

BACKGROUND: Drug repositioning is a promising and efficient way to discover new indications for existing drugs, which holds the great potential for precision medicine in the post-genomic era. Many network-based approaches have been proposed for drug repositioning based on similarity networks, which...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Zhen, Teng, Zhixia, Cheng, Shuang, Guo, Maozu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311940/
https://www.ncbi.nlm.nih.gov/pubmed/30598084
http://dx.doi.org/10.1186/s12918-018-0658-7
Descripción
Sumario:BACKGROUND: Drug repositioning is a promising and efficient way to discover new indications for existing drugs, which holds the great potential for precision medicine in the post-genomic era. Many network-based approaches have been proposed for drug repositioning based on similarity networks, which integrate multiple sources of drugs and diseases. However, these methods may simply view nodes as the same-typed and neglect the semantic meanings of different meta-paths in the heterogeneous network. Therefore, it is urgent to develop a rational method to infer new indications for approved drugs. RESULTS: In this study, we proposed a novel methodology named HeteSim_DrugDisease (HSDD) for the prediction of drug repositioning. Firstly, we build the drug-drug similarity network and disease-disease similarity network by integrating the information of drugs and diseases. Secondly, a drug-disease heterogeneous network is constructed, which combines the drug similarity network, disease similarity network as well as the known drug-disease association network. Finally, HSDD predicts novel drug-disease associations based on the HeteSim scores of different meta-paths. The experimental results show that HSDD performs significantly better than the existing state-of-the-art approaches. HSDD achieves an AUC score of 0.8994 in the leave-one-out cross validation experiment. Moreover, case studies for selected drugs further illustrate the practical usefulness of HSDD. CONCLUSIONS: HSDD can be an effective and feasible way to infer the associations between drugs and diseases using on meta-path-based semantic network analysis.