Cargando…
Integrating node embeddings and biological annotations for genes to predict disease-gene associations
BACKGROUND: Predicting disease causative genes (or simply, disease genes) has played critical roles in understanding the genetic basis of human diseases and further providing disease treatment guidelines. While various computational methods have been proposed for disease gene prediction, with the re...
Autores principales: | Ata, Sezin Kircali, Ou-Yang, Le, Fang, Yuan, Kwoh, Chee-Keong, Wu, Min, Li, Xiao-Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311944/ https://www.ncbi.nlm.nih.gov/pubmed/30598097 http://dx.doi.org/10.1186/s12918-018-0662-y |
Ejemplares similares
-
Integrating diverse biological and computational sources for reliable protein-protein interactions
por: Wu, Min, et al.
Publicado: (2010) -
Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast
por: Wu, Min, et al.
Publicado: (2014) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012) -
Inferring Gene-Phenotype Associations via Global Protein Complex Network Propagation
por: Yang, Peng, et al.
Publicado: (2011) -
Gene, Environment and Methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide association studies and integrate genotype and interaction between genotype and environment
por: Pan, Hong, et al.
Publicado: (2016)