Cargando…
Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies
The application of machine learning in medicine has been productive in multiple fields, but has not previously been applied to analyze the complexity of organ involvement by chronic graft-versus-host disease. Chronic graft-versus-host disease is classified by an overall composite score as mild, mode...
Autores principales: | Gandelman, Jocelyn S., Byrne, Michael T., Mistry, Akshitkumar M., Polikowsky, Hannah G., Diggins, Kirsten E., Chen, Heidi, Lee, Stephanie J., Arora, Mukta, Cutler, Corey, Flowers, Mary, Pidala, Joseph, Irish, Jonathan M., Jagasia, Madan H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ferrata Storti Foundation
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312024/ https://www.ncbi.nlm.nih.gov/pubmed/30237265 http://dx.doi.org/10.3324/haematol.2018.193441 |
Ejemplares similares
-
Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells
por: Leelatian, Nalin, et al.
Publicado: (2020) -
High-Dimensional Analysis of Acute Myeloid Leukemia Reveals Phenotypic Changes in Persistent Cells during Induction Therapy
por: Ferrell, Paul Brent, et al.
Publicado: (2016) -
Durable discontinuation of systemic therapy in patients affected by chronic graft-versus-host disease
por: Chen, George L., et al.
Publicado: (2022) -
Initial therapy for chronic graft-versus-host disease: analysis of practice variation and failure-free survival
por: Pidala, Joseph, et al.
Publicado: (2021) -
On the subventricular zone origin of human glioblastoma
por: Mistry, Akshitkumar M.
Publicado: (2019)