Cargando…
Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits
Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. T...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312252/ https://www.ncbi.nlm.nih.gov/pubmed/30596714 http://dx.doi.org/10.1371/journal.pone.0209747 |
_version_ | 1783383744391938048 |
---|---|
author | Wang, Hsueh-Chun Lin, Yi-Ting Lin, Tzu-Hsiang Chang, Nai-Jen Lin, Chih-Chan Hsu, Horng-Chaung Yeh, Ming-Long |
author_facet | Wang, Hsueh-Chun Lin, Yi-Ting Lin, Tzu-Hsiang Chang, Nai-Jen Lin, Chih-Chan Hsu, Horng-Chaung Yeh, Ming-Long |
author_sort | Wang, Hsueh-Chun |
collection | PubMed |
description | Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. To date, the effects of administration of GlcNAc and hyaluronic acid (HA) have been investigated only in the context of osteoarthritis treatment. Therefore, we evaluated the therapeutic effects of using cell-free porous poly lactic-co-glycolic acid (PLGA) graft implants and intra-articular injections of GlcNAc or HA in a rabbit model of osteochondral regeneration to investigate whether they have the potential for inducing osteochondral regeneration when used alone or simultaneously. Twenty-four rabbits were randomized into one of four groups: the scaffold-only group (PLGA), the scaffold with intra-articular injections of GlcNAc (PLGA+G) group, twice per week for four weeks; the scaffold with intra-articular injections of HA group (PLGA+HA) group, once per week for three weeks; and the scaffold with intra-articular injections of GlcNAc and HA (PLGA+G+HA) group, once per week for three weeks. Knees were evaluated at 4 and 12 weeks after surgery. At the end of testing, only the PLGA+G+HA group exhibited significant bone reconstruction, chondrocyte clustering, and good interactions with adjacent surfaces at 4 weeks. Additionally, the PLGA+G+HA group demonstrated essentially original hyaline cartilage structures that appeared to have sound chondrocyte orientation, considerable glycosaminoglycan levels, and reconstruction of the bone structure at 12 weeks. Moreover, the PLGA+G+HA group showed organized osteochondral integration and significantly higher bone volume per tissue volume and trabecular thickness. However, there were no significant differences between the PLGA+G and PLGA+HA groups except for gap formation on subchondral bone in the PLGA+G group. This study demonstrated that PLGA implantation combined with intra-articular injections of GlcNAc and HA allowed for cartilage and bone regeneration and significantly promoted osteochondral regeneration in rabbits without supplementation of exogenous growth factors. And the combination of this two supplements with PLGA scaffold could also prolong injection interval and better performance than either of them alone for the reconstruction of osteochondral tissue in the knee joints of rabbits. |
format | Online Article Text |
id | pubmed-6312252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63122522019-01-08 Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits Wang, Hsueh-Chun Lin, Yi-Ting Lin, Tzu-Hsiang Chang, Nai-Jen Lin, Chih-Chan Hsu, Horng-Chaung Yeh, Ming-Long PLoS One Research Article Repairing damaged articular cartilage is particularly challenging because of the limited ability of cartilage to perform self-repair. Intra-articular injections of N-acetylglucosamine (GlcNAc) comprise a method of repairing full-thickness articular cartilage defects in the rabbit knee joint model. To date, the effects of administration of GlcNAc and hyaluronic acid (HA) have been investigated only in the context of osteoarthritis treatment. Therefore, we evaluated the therapeutic effects of using cell-free porous poly lactic-co-glycolic acid (PLGA) graft implants and intra-articular injections of GlcNAc or HA in a rabbit model of osteochondral regeneration to investigate whether they have the potential for inducing osteochondral regeneration when used alone or simultaneously. Twenty-four rabbits were randomized into one of four groups: the scaffold-only group (PLGA), the scaffold with intra-articular injections of GlcNAc (PLGA+G) group, twice per week for four weeks; the scaffold with intra-articular injections of HA group (PLGA+HA) group, once per week for three weeks; and the scaffold with intra-articular injections of GlcNAc and HA (PLGA+G+HA) group, once per week for three weeks. Knees were evaluated at 4 and 12 weeks after surgery. At the end of testing, only the PLGA+G+HA group exhibited significant bone reconstruction, chondrocyte clustering, and good interactions with adjacent surfaces at 4 weeks. Additionally, the PLGA+G+HA group demonstrated essentially original hyaline cartilage structures that appeared to have sound chondrocyte orientation, considerable glycosaminoglycan levels, and reconstruction of the bone structure at 12 weeks. Moreover, the PLGA+G+HA group showed organized osteochondral integration and significantly higher bone volume per tissue volume and trabecular thickness. However, there were no significant differences between the PLGA+G and PLGA+HA groups except for gap formation on subchondral bone in the PLGA+G group. This study demonstrated that PLGA implantation combined with intra-articular injections of GlcNAc and HA allowed for cartilage and bone regeneration and significantly promoted osteochondral regeneration in rabbits without supplementation of exogenous growth factors. And the combination of this two supplements with PLGA scaffold could also prolong injection interval and better performance than either of them alone for the reconstruction of osteochondral tissue in the knee joints of rabbits. Public Library of Science 2018-12-31 /pmc/articles/PMC6312252/ /pubmed/30596714 http://dx.doi.org/10.1371/journal.pone.0209747 Text en © 2018 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Hsueh-Chun Lin, Yi-Ting Lin, Tzu-Hsiang Chang, Nai-Jen Lin, Chih-Chan Hsu, Horng-Chaung Yeh, Ming-Long Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits |
title | Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits |
title_full | Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits |
title_fullStr | Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits |
title_full_unstemmed | Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits |
title_short | Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits |
title_sort | intra-articular injection of n-acetylglucosamine and hyaluronic acid combined with plga scaffolds for osteochondral repair in rabbits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312252/ https://www.ncbi.nlm.nih.gov/pubmed/30596714 http://dx.doi.org/10.1371/journal.pone.0209747 |
work_keys_str_mv | AT wanghsuehchun intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits AT linyiting intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits AT lintzuhsiang intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits AT changnaijen intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits AT linchihchan intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits AT hsuhorngchaung intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits AT yehminglong intraarticularinjectionofnacetylglucosamineandhyaluronicacidcombinedwithplgascaffoldsforosteochondralrepairinrabbits |