Cargando…

Commitment to Aerobic Glycolysis Sustains Immunosuppression of Human Mesenchymal Stem Cells

Human mesenchymal stem cells (hMSCs) promote endogenous tissue repair in part by coordinating multiple components of the host immune system in response to environmental stimuli. Recent studies have shown that hMSCs are metabolically heterogeneous and actively reconfigure metabolism to support the bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yijun, Yuan, Xuegang, Muñoz, Nathalie, Logan, Timothy M., Ma, Teng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312448/
https://www.ncbi.nlm.nih.gov/pubmed/30272389
http://dx.doi.org/10.1002/sctm.18-0070
Descripción
Sumario:Human mesenchymal stem cells (hMSCs) promote endogenous tissue repair in part by coordinating multiple components of the host immune system in response to environmental stimuli. Recent studies have shown that hMSCs are metabolically heterogeneous and actively reconfigure metabolism to support the biochemical demands of tissue repair. However, how hMSCs regulate their energy metabolism to support their immunomodulatory properties is largely unknown. This study investigates hMSC metabolic reconfiguration during immune activation and provides evidence that the hMSC metabolic state significantly influences their immunomodulatory properties. Specifically, hMSC immune polarization by interferon‐gamma (IFN‐γ) treatment leads to remodeling of hMSC metabolic pathways toward glycolysis, which is required to sustain the secretion of immunosuppressive factors. IFN‐γ exposure also inhibited mitochondrial electron transport activity, and the accumulation of mitochondrial reactive oxygen species plays an important signaling role in this metabolic reconfiguration. The results also show that activation of the Akt/mTOR signaling pathway is required for metabolic reconfiguration during immune polarization and that interruption of these metabolic changes alters the immune response in IFN‐γ licensed hMSCs. The results demonstrate the potential of altering hMSC metabolism to enhance their immunomodulatory properties and therapeutic efficacy in various diseases. Stem Cells Translational Medicine 2019;8:93–106